Generalized dynamical entropies in weakly chaotic systems

نویسنده

  • Henk van Beijeren
چکیده

A large class of technically non-chaotic systems, involving scatterings of light particles by flat surfaces with sharp boundaries, is nonetheless characterized by complex random looking motion in phase space. For these systems one may define a generalized, Tsallis type dynamical entropy that increases linearly with time. It characterizes a maximal gain of information about the system that increases as a power of time. However, this entropy cannot be chosen independently from the choice of coarse graining lengths and it assigns positive dynamical entropies also to fully integrable systems. By considering these dependencies in detail one usually will be able to distinguish weakly chaotic from fully integrable systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LI-YORKE CHAOTIC GENERALIZED SHIFT DYNAMICAL SYSTEMS

‎In this text we prove that in generalized shift dynamical system $(X^Gamma,sigma_varphi)$‎ ‎for finite discrete $X$ with at least two elements‎, ‎infinite countable set $Gamma$ and‎ ‎arbitrary map $varphi:GammatoGamma$‎, ‎the following statements are equivalent‎: ‎ - the dynamical system $(X^Gamma,sigma_varphi)$ is‎ Li-Yorke chaotic;‎ - the dynamical system $(X^Gamma,sigma_varphi)$ has‎ an scr...

متن کامل

COUNTEREXAMPLES IN CHAOTIC GENERALIZED SHIFTS

‎In the following text for arbitrary $X$ with at least two elements‎, ‎nonempty countable set $Gamma$‎ ‎we make a comparative study on the collection of generalized shift dynamical systems like $(X^Gamma,sigma_varphi)$ where $varphi:GammatoGamma$ is an arbitrary self-map‎. ‎We pay attention to sub-systems and combinations of generalized shifts with counterexamples regarding Devaney‎, ‎exact Dev...

متن کامل

Information, initial condition sensitivity and dimension in weakly chaotic dynamical systems

We study generalized indicators of sensitivity to initial conditions and orbit complexity in topological dynamical systems. The orbit complexity is a measure of the asymptotic behavior of the information that is necessary to describe the orbit of a given point. The indicator generalizes, in a certain sense, the Brudno’s orbit complexity (which is strongly related to the entropy of the system). ...

متن کامل

Orbit complexity, initial data sensitivity and weakly chaotic dynamical systems

We give a definition of generalized indicators of sensitivity to initial conditions and orbit complexity (a measure of the information that is necessary to describe the orbit of a given point). The well known Ruelle-Pesin and Brin-Katok theorems, combined with Brudno’s theorem give a relation between initial data sensitivity and orbit complexity that is generalized in the present work. The gene...

متن کامل

Symbolic Dynamics of One-Dimensional Maps: Entropies, Finite Precision, and Noise

In the study of nonlinear physical systems, one encounters apparently random or chaotic behavior, although the systems may be completely deterministic. Applying techniques from symbolic dynamics to maps of the interval, we compute two measures of chaotic behavior commonly employed in dynamical systems theory: the topological and metric entropies. For the quadratic logistic equation, we find tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003