Dichloroacetate Enhances Adriamycin-Induced Hepatoma Cell Toxicity In Vitro and In Vivo by Increasing Reactive Oxygen Species Levels
نویسندگان
چکیده
A unique bioenergetic feature of cancer, aerobic glycolysis is considered an attractive therapeutic target for cancer therapy. Recently, dichloroacetate (DCA), a small-molecule metabolic modulator, was shown to reverse the glycolytic phenotype, induce reactive oxygen species (ROS) generation, and trigger apoptosis in various tumor cells. In this work, the capacity of DCA to enhance Adriamycin (ADM) efficacy in hepatoma cells by modulating glucose metabolism and redox status was evaluated. Two human hepatoma (HCC-LM3 and SMMC-7721) and a normal liver (LO2) cell lines were treated with DCA or ADM alone, or in combination. Exposure of hepatoma cells to DCA/ADM combination resulted in significantly decreased cell viability and increased percentage of apoptotic cells as well as intracellular ROS levels, in comparison with treatment with DCA or ADM alone. However, simultaneous treatment with the thiol antioxidant N-acetylcysteine (NAC, 10 mmol/L) reduced the elevated ROS levels and protected hepatoma cells from the cytotoxic effects of DCA/ADM combination. L-buthionine-[S,R]-sulfoximine, an inhibitor of glutathione synthesis, enhanced hepatoma cell sensitivity to DCA/ADM combination. Interestingly, treatment with DCA/ADM combination did not significantly increase cytotoxicity in normal hepatocytes in comparison with the drugs administered individually. Finally, DCA reduced tumor growth and enhanced ADM efficacy on HCC-LM3 hepatoma in mice. Overall, our data suggest that DCA enhances ADM cytotoxicity in hepatoma cells by increasing intracellular ROS levels and provide a strong biochemical rationale for the use of DCA in combination with ADM for treatment of hepatoma.
منابع مشابه
Diisopropylamine dichloroacetate enhances radiosensitization in esophageal squamous cell carcinoma by increasing mitochondria-derived reactive oxygen species levels
Radiotherapy is generally applied in the treatment of esophageal squamous cell carcinoma (ESCC). However, the radioresistance of ESCC still remains an obstacle for the curative effect of this treatment. We hypothesized that diisopropylamine dichloroacetate (DADA), an inhibitor of pyruvate dehydrogenase kinase (PDK), might enhance radiosensitizationin resistant ESCC. The clonogenic survival assa...
متن کاملRole of Caspases and Reactive Oxygen Species in Rose Bengal-Induced Toxicity in Melanoma Cells
Objective We have previously shown that Rose Bengal (RB) alone, not as a photosensitiser, could induce apoptotic- and non-apoptotic cell death in different melanoma cell lines. To clarify RB-induced toxicity mechanisms, role of caspases and reactive oxygen specious (ROS) were studied in melanoma cells. Material and Methods Human melanoma cell lines, Me 4405 and Sk-Mel-28 were cultured in DM...
متن کاملComparative stepwise pattern of reactive oxygen species production during in vitro development of fertilized and nuclear transferred goat embryos
Objective A unique feature of embryo metabolism is production of reactive oxygen species (ROS). It is well established that during in vitro culture, ROS levels increase over normal ranges observed for embryos developed in vivo. This study evaluates and compares the stepwise pattern of ROS production during in vitro development of reconstructed goat embryos produced by zona-free method of somati...
متن کاملO 22: Reactive Oxygen Species and Epilepsy
Seizure activity has been proposed to result in the generation of reactive oxygen species (ROS), which then contribute to seizure-induced neuronal damage and eventually cell death. Although the mechanisms of seizure-induced ROS generation are unclear, mitochondria and cellular calcium overload have been proposed to have a crucial role. We aim to determine the sources of seizure-induced ROS and ...
متن کاملThe role of local renin-angiotensin system on high glucose-induced cell toxicity, apoptosis and reactive oxygen species production in PC12 cells
Objective(s): Hyperglycemia, oxidative stress and apoptosis have key roles in pathogenesis of diabetic neuropathy. There are local renin-angiotensin systems (RASs) in different tissues such as neural tissue. Local RASs are involved in physiological and pathophysiological processes such as inflammation, proliferation and apoptosis. This study aimed to investigate the role of local renin-angioten...
متن کامل