Dislocation slip stress prediction in shape memory alloys

نویسنده

  • J. Wang
چکیده

We provide an extended Peierls–Nabarro (P–N) formulation with a sinusoidal series representation of generalized stacking fault energy (GSFE) to establish flow stress in a Ni2FeGa shape memory alloy. The resultant martensite structure in Ni2FeGa is L10 tetragonal. The atomistic simulations allowed determination of the GSFE landscapes for the (111) slip plane and 2 1⁄2 101 ; 2 1⁄2 110 ; 6 1⁄2 211 and 6 1⁄211 2 slip vectors. The energy barriers in the (111) plane were associated with superlattice intrinsic stacking faults, complex stacking faults and anti-phase boundaries. The smallest energy barrier was determined as 168 mJ/m corresponding to a Peierls stress of 1.1 GPa for the 6 1⁄211 2 ð111Þ slip system. Experiments on single crystals of Ni2FeGa were conducted under tension where the specimen underwent austenite to martensite transformation followed by elasto-plastic martensite deformation. The experimentally determined martensite slip stress (0.75 GPa) was much closer to the P–N stress predictions (1.1 GPa) compared to the theoretical slip stress levels (3.65 GPa). The evidence of dislocation slip in Ni2FeGa martensite was also identified with transformation electron microscopy observations. We also investigated dislocation slip in several important shape memory alloys and predicted Peierls stresses in Ni2FeGa, NiTi, Co2NiGa, Co2NiAl, CuZn and Ni2TiHf austenite in excellent agreement with experiments. 2013 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of thermal cross-slip stress in magnesium alloys from a geometric interaction model

We develop a geometry-based model from first-principles data for the interaction of solutes with a prismatic screw dislocation core, and predict the thermally activated cross-slip stress above room temperature in Mg alloys. Electronic structure methods provide data for the change in prismatic stacking fault energy for different possible fault configurations for 29 different solutes. The direct ...

متن کامل

Transformation and slip behavior of Ni2FeGa

Ni2FeGa is a relatively new shape memory alloy (SMA) and exhibits superior characteristics compared to other SMAs. Its favorable properties include low transformation stress, high reversible strains and small hysteresis. The first stage of stress-induced martensitic transformation is from a cubic to a modulated monoclinic phase. The energy barriers associated with the transformation from L21 (c...

متن کامل

Two-way shape memory effect of a TiNiHf high temperature shape memory alloy

The two-way shape memory effect in a Ti36Ni49Hf15 high temperature shape memory alloy (SMA) has been systematically studied by bending tests. In the TiNiHf alloy, the martensite deformation is an effective method to get two-way shape memory effect even with a small deformation strain. When the TiNiHf alloy is deformed at a full martensite state, the deformation mechanism is the martensite orien...

متن کامل

Adaptive Tunable Vibration Absorber using Shape Memory Alloy

This study presents a new approach to control the nonlinear dynamics of an adaptive absorber using shape memory alloy (SMA) element. Shape memory alloys are classified as smart materials that can remember their original shape after deformation. Stress and temperature-induced phase transformations are two typical behaviors of shape memory alloys. Changing the stiffness associated with phase tran...

متن کامل

Prediction of thermal cross-slip stress in magnesium alloys from direct first-principles data

We develop a first-principles model of thermally activated cross-slip in magnesium in the presence of a random solute distribution. Electronic structure methods provide data for the interaction of solutes with prismatic dislocation cores and basal dislocation cores. Direct calculations of interaction energies are possible for solutes – K, Na and Sc – that lower the Mg prismatic stacking fault e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013