Comprehensive molecular mechanics model for oxidized type I copper proteins: active site structures, strain energies, and entatic bulging.

نویسنده

  • Robert J Deeth
چکیده

The ligand field molecular mechanics (LFMM) model has been applied to the oxidized Type 1 copper center. In conjunction with the AMBER94 force field implemented in DommiMOE, the ligand field extension of the molecular operating environment (MOE), LFMM parameters for Cu-N(imidazole), Cu-S(thiolate), Cu-S(thioether), and Cu-O(carbonyl) interactions were developed on the basis of experimental and theoretical data for homoleptic model systems. Subsequent LFMM optimizations of the active site model complex [Cu(imidazole)2(SMe)(SMe2]+ agree with high level quantum results both structurally and energetically. Stable trigonal and tetragonal structures are located with the latter about 1.5 kcal mol-1 lower in energy. Fully optimized unconstrained structures were computed for 24 complete proteins containing T1 centers spanning four-coordinate, plastocyanin-like CuN2SS' and stellacyanin-like CuN2SO sites, plus the five-coordinate CuN2SS'O sites of the azurins. The initial structures were based on PDB coordinates augmented by a 10 A layer of water molecules. Agreement between theory and experiment is well within the experimental uncertainties. Moreover, the LFMM results for plastocyanin (Pc), cucumber basic protein (CBP) and azurin (Az) are at least as good as previously reported QM/MM structures and are achieved several orders of magnitude faster. The LFMM calculations suggest the protein provides an entatic strain of about 10 kcal mol-1. However, when combined with the intrinsic 'plasticity' of d9 Cu(II), different starting protein/solvent configurations can have a significant effect on the final optimized structure. This 'entatic bulging' results in relatively large fluctuations in the calculated metal-ligand bond lengths. For example, simply on the basis of 25 different starting configurations of the solvent molecules, the optimized Cu-S(thiolate) bond lengths in Pc vary by 0.04 A while the Cu-S(thioether) distance spans over 0.3 A. These variations are the same order of magnitude as the differences often quoted to correlate the spectroscopic properties from a set of proteins. Isolated optimizations starting from PDB coordinates (or indeed, the PDB structures themselves) may only accidentally correlate with spectroscopic measurements. The present calculations support the work of Warshel who contends that adequate configurational averaging is necessary to make proper contact with experimental properties measured in solution. The LFMM is both sufficiently accurate and fast to make this practical.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A QM/MM study of the nature of the entatic state in plastocyanin

Plastocyanin is a copper containing protein that is involved in the electron transfer process in photosynthetic organisms. The active site of plastocyanin is described as an entatic state whereby its structure represents a compromise between the structures favored by the oxidized and reduced forms. In this study, the nature of the entatic state is investigated through density functional theory-...

متن کامل

NMR and Solvent Effect Study on the Active Site of Oxidized Azurin

We have evaluated the NMR shielding tensors for active site of oxidized ayurin Azurin is classified to atype I copper protein with ET functionality. We have computed NMR shielding tensor at .133LYP and IDlevels by usum 6-3IG basis set in the gas phase and in different solvents such as water, HMSO,Nitromethane, methanol, ethanol, acetone ,dicholoroethane. These solvents represent a wide range of...

متن کامل

Computational study of the structure and electronic circular dichroism spectroscopy of blue copper proteins.

The calculation of the electronic circular dichroism (CD) spectra of the oxidized form of the blue copper proteins plastocyanin and cucumber basic protein and the relationship between the observed spectral features and the structure of the active site of the protein is investigated. Excitation energies and transition strengths are computed using multireference configuration interaction, and it ...

متن کامل

Molecular Dynamics Study of Hydration Water Behavior in Blue Copper Protein

Blue copper proteins are categorized into three types (type1, type2, and type3) by their structures and functions. Azurin is one of the type 1 blue copper protein. The structure consists of eight β strands and an α helix with 128 residues. Azurin has the functionality of electron transfer because of their prominent reactivity. The active site of azurin consists of a copper ion and five ligand r...

متن کامل

A test of ligand field molecular mechanics as an efficient alternative to QM/MM for modelling metalloproteins: the structures of oxidised type I copper centres.

Ligand Field Molecular Mechanics based on homoleptic model systems delivers accurate, unbiased geometries of complete mononuclear blue copper proteins about four orders of magnitude faster than comparable QM/MM calculations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inorganic chemistry

دوره 46 11  شماره 

صفحات  -

تاریخ انتشار 2007