Inverses, determinants, eigenvalues, and eigenvectors of real symmetric Toeplitz matrices with linearly increasing entries

نویسنده

  • F. Bünger
چکیده

We explicitly determine the skew-symmetric eigenvectors and corresponding eigenvalues of the real symmetric Toeplitz matrices T = T (a, b, n) := (a+ b|j − k|)1≤j,k≤n of order n ≥ 3 where a, b ∈ R, b 6= 0. The matrix T is singular if and only if c := a b = −n−1 2 . In this case we also explicitly determine the symmetric eigenvectors and corresponding eigenvalues of T . If T is regular, we explicitly compute the inverse T−1, the determinant detT , and the symmetric eigenvectors and corresponding eigenvalues of T are described in terms of the roots of the real self-inversive polynomial pn(δ; z) := (z −δz−δz+1)/(z+1) if n is even, and pn(δ; z) := z −δz−δz+1 if n is odd, δ := 1+2/(2c+n−1).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The spectral decomposition of near-Toeplitz tridiagonal matrices

Some properties of near-Toeplitz tridiagonal matrices with specific perturbations in the first and last main diagonal entries are considered. Applying the relation between the determinant and Chebyshev polynomial of the second kind, we first give the explicit expressions of determinant and characteristic polynomial, then eigenvalues are shown by finding the roots of the characteristic polynomia...

متن کامل

The Spectral Decomposition of Some Tridiagonal Matrices

Some properties of near-Toeplitz tridiagonal matrices with specific perturbations in the first and last main diagonal entries are considered. Applying the relation between the determinant and Chebyshev polynomial of the second kind, we first give the explicit expressions of determinant and characteristic polynomial, then eigenvalues are shown by finding the roots of the characteristic polynomia...

متن کامل

On inverse eigenvalue problems for block Toeplitz matrices with Toeplitz blocks

We propose an algorithm for solving the inverse eigenvalue problem for real symmetric block Toeplitz matrices with symmetric Toeplitz blocks. It is based upon an algorithm which has been used before by others to solve the inverse eigenvalue problem for general real symmetric matrices and also for Toeplitz matrices. First we expose the structure of the eigenvectors of the so-called generalized c...

متن کامل

An FPT algorithm with a modularized structure for computing two-dimensional discrete Fourier transforms

With the change of variables U = U*q, substitution into (21) results in UCU*q = Ud. Consequently, the solution vector U of (20) can be obtained from the solution vector q of (22) or q can be obtained from U. Note that if a system of real equations is Toeplitz-plus-Hankel (T + H) , where T i s symmetric Toeplitz and H i s skew-centrosym-metric Hankel, then the equations may be transformed into H...

متن کامل

Fluctuations of eigenvalues for random Toeplitz and related matrices

Consider random symmetric Toeplitz matrices Tn = (ai−j) n i,j=1 with matrix entries aj , j = 0, 1, 2, · · · , being independent real random variables such that E[aj ] = 0, E[|aj |] = 1 for j = 0, 1, 2, · · · , (homogeneity of 4-th moments) κ = E[|aj |], and further (uniform boundedness) sup j≥0 E[|aj |] = Ck <∞ for k ≥ 3. Under the assumption of a0 ≡ 0, we prove a central limit theorem for line...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014