Bootstrapping Semantic Parsers from Conversations
نویسندگان
چکیده
Conversations provide rich opportunities for interactive, continuous learning. When something goes wrong, a system can ask for clarification, rewording, or otherwise redirect the interaction to achieve its goals. In this paper, we present an approach for using conversational interactions of this type to induce semantic parsers. We demonstrate learning without any explicit annotation of the meanings of user utterances. Instead, we model meaning with latent variables, and introduce a loss function to measure how well potential meanings match the conversation. This loss drives the overall learning approach, which induces a weighted CCG grammar that could be used to automatically bootstrap the semantic analysis component in a complete dialog system. Experiments on DARPA Communicator conversational logs demonstrate effective learning, despite requiring no explicit meaning annotations.
منابع مشابه
Learning a Lexicon for Broad-Coverage Semantic Parsing
While there has been significant recent work on learning semantic parsers for specific task/ domains, the results don’t transfer from one domain to another domains. We describe a project to learn a broad-coverage semantic lexicon for domain independent semantic parsing. The technique involves several bootstrapping steps starting from a semantic parser based on a modest-sized hand-built semantic...
متن کاملBootstrapping statistical parsers from small datasets
We present a practical co-training method for bootstrapping statistical parsers using a small amount of manually parsed training material and a much larger pool of raw sentences. Experimental results show that unlabelled sentences can be used to improve the performance of statistical parsers. In addition, we consider the problem of bootstrapping parsers when the manually parsed training materia...
متن کاملAcquisition of Subjective Adjectives with Limited Resources
This paper describes a bootstrapping algorithm for acquiring a lexicon of subjective adjectives which minimizes the recourse to external resources (such as lexical databases, parsers, manual annotation work). The method only employs a corpus tagged with part-ofspeech information and a seed set of subjective adjectives. The list of candidate subjective adjectives is generated incrementally by lo...
متن کاملExample Selection for Bootstrapping Statistical Parsers
This paper investigates bootstrapping for statistical parsers to reduce their reliance on manually annotated training data. We consider both a mostly-unsupervised approach, co-training, in which two parsers are iteratively re-trained on each other’s output; and a semi-supervised approach, corrected co-training, in which a human corrects each parser’s output before adding it to the training data...
متن کاملDependency Parsers for Persian
We present two dependency parsers for Persian, MaltParser and MSTParser, trained on the Uppsala PErsian Dependency Treebank. The treebank consists of 1,000 sentences today. Its annotation scheme is based on Stanford Typed Dependencies (STD) extended for Persian with regard to object marking and light verb contructions. The parsers and the treebank are developed simultanously in a bootstrapping ...
متن کامل