Supervised Metaphor Detection using Conditional Random Fields
نویسندگان
چکیده
In this paper, we propose a novel approach for supervised classification of linguistic metaphors in an open domain text using Conditional Random Fields (CRF). We analyze CRF based classification model for metaphor detection using syntactic, conceptual, affective, and word embeddings based features which are extracted from MRC Psycholinguistic Database (MRCPD) and WordNet-Affect. We use word embeddings given by Huang et al. to capture information such as coherence and analogy between words. To tackle the bottleneck of limited coverage of psychological features in MRCPD, we employ synonymy relations from WordNet ® . A comparison of our approach with previous approaches shows the efficacy of CRF classifier in detecting metaphors. The experiments conducted on VU Amsterdam metaphor corpus provides an accuracy of more than 92% and Fmeasure of approximately 78%. Results shows that inclusion of conceptual features improves the recall by 5% whereas affective features do not have any major impact on metaphor detection in open text.
منابع مشابه
Automated Intrusion Detection for Video Surveillance Using Conditional Random Fields
In this paper, we propose a method for intrusion detection in a video surveillance scenario. For this purpose, we train a conditional random field (CRF) on features extracted from a video stream. CRFs estimate a state sequence, given a feature sequence. To detect intrusions, we analyze this state sequence. CRFs are usually trained in a supervised manner. Here, we especially propose a new traini...
متن کاملPainless Semi-Supervised Morphological Segmentation using Conditional Random Fields
We discuss data-driven morphological segmentation, in which word forms are segmented into morphs, that is the surface forms of morphemes. We extend a recent segmentation approach based on conditional random fields from purely supervised to semi-supervised learning by exploiting available unsupervised segmentation techniques. We integrate the unsupervised techniques into the conditional random f...
متن کاملConditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کاملGeneralized Expectation Criteria for Semi-Supervised Learning of Conditional Random Fields
This paper presents a semi-supervised training method for linear-chain conditional random fields that makes use of labeled features rather than labeled instances. This is accomplished by using generalized expectation criteria to express a preference for parameter settings in which the model’s distribution on unlabeled data matches a target distribution. We induce target conditional probability ...
متن کاملWeakly Supervised Slot Tagging with Partially Labeled Sequences from Web Search Click Logs
In this paper, we apply a weakly-supervised learning approach for slot tagging using conditional random fields by exploiting web search click logs. We extend the constrained lattice training of Täckström et al. (2013) to non-linear conditional random fields in which latent variables mediate between observations and labels. When combined with a novel initialization scheme that leverages unlabele...
متن کامل