Complexity of Steiner Tree in Split Graphs - Dichotomy Results
نویسندگان
چکیده
Given a connected graph G and a terminal set R ⊆ V (G), Steiner tree asks for a tree that includes all of R with at most r edges for some integer r ≥ 0. It is known from [ND12,Garey et. al [1]] that Steiner tree is NP-complete in general graphs. Split graph is a graph which can be partitioned into a clique and an independent set. K. White et. al [2] has established that Steiner tree in split graphs is NP-complete. In this paper, we present an interesting dichotomy: we show that Steiner tree on K1,4-free split graphs is polynomial-time solvable, whereas, Steiner tree on K1,5-free split graphs is NP-complete. We investigate K1,4-free and K1,3-free (also known as claw-free) split graphs from a structural perspective. Further, using our structural study, we present polynomial-time algorithms for Steiner tree in K1,4-free and K1,3-free split graphs. Although, polynomial-time solvability of K1,3-free split graphs is implied from K1,4-free split graphs, we wish to highlight our structural observations on K1,3-free split graphs which may be used in other combinatorial problems.
منابع مشابه
Parameterized Complexity Dichotomy for Steiner Multicut
We consider the Steiner Multicut problem, which asks, given an undirected graph G, a collection T = {T1, . . . , Tt}, Ti ⊆ V (G), of terminal sets of size at most p, and an integer k, whether there is a set S of at most k edges or nodes such that of each set Ti at least one pair of terminals is in different connected components of G \S. This problem generalizes several well-studied graph cut pr...
متن کاملHamiltonian Path in Split Graphs- a Dichotomy
In this paper, we investigate Hamiltonian path problem in the context of split graphs, and produce a dichotomy result on the complexity of the problem. Our main result is a deep investigation of the structure of $K_{1,4}$-free split graphs in the context of Hamiltonian path problem, and as a consequence, we obtain a polynomial-time algorithm to the Hamiltonian path problem in $K_{1,4}$-free spl...
متن کامل1.757 and 1.267 - Approximation Algorithms for the Network and Rectilinear Steiner Tree Problems
The Steiner tree problem requires to nd a shortest tree connecting a given set of terminal points in a metric space. We suggest a better and fast heuristic for the Steiner problem in graphs and in rectilinear plane. This heuristic nds a Steiner tree at most 1.757 and 1.267 times longer than the optimal solution in graphs and rectilinear plane, respectively.
متن کاملParameterized Complexity of Directed Steiner Tree on Sparse Graphs
We study the parameterized complexity of the directed variant of the classical Steiner Tree problem on various classes of directed sparse graphs. While the parameterized complexity of Steiner Tree parameterized by the number of terminals is well understood, not much is known about the parameterization by the number of non-terminals in the solution tree. All that is known for this parameterizati...
متن کاملPrize-Collecting Steiner Tree and Forest in Planar Graphs
We obtain polynomial-time approximation-preserving reductions (up to a factor of 1+ε) from the prizecollecting Steiner tree and prize-collecting Steiner forest problems in planar graphs to the corresponding problems in graphs of bounded treewidth. We also give an exact algorithm for the prize-collecting Steiner tree problem that runs in polynomial time for graphs of bounded treewidth. This, com...
متن کامل