On the time to tracer equilibrium in the global ocean

نویسندگان

  • F. Primeau
  • E. Deleersnijder
چکیده

An important issue for the interpretation of data from deep-sea cores is the time for tracers to be transported from the sea surface to the deep ocean. Global ocean circulation models can help shed light on the timescales over which a tracer comes to equilibrium in different regions of the ocean. In this note, we discuss how the most slowly decaying eigenmode of a model can be used to obtain a relevant timescale for a tracer that enters through the sea surface to become well mixed in the ocean interior. We show how this timescale depends critically on the choice between a Neumann surface boundary condition in which the flux of tracer is prescribed, a Robin surface boundary condition in which a combination of the flux and tracer concentration is prescribed or a Dirichlet surface boundary condition in which the concentration is prescribed. Explicit calculations with a 3-box model and a three-dimensional ocean circulation model show that the Dirichlet boundary condition when applied to only part of the surface ocean greatly overestimate the time needed to reach equilibrium. As a result regional“injection” calculations which prescribe the surface concentration instead of the surface flux are not relevant for interpreting the regional disequilibrium between the Atlantic and Pacific found in paleo-tracer records from deep-sea cores. For tracers that enter the ocean through air-sea gas exchange a prescribed concentration boundary condition can be used to infer relevant timescales if the air-sea gas exchange rate is sufficiently fast, but the boundary condition must be applied over the entire ocean surface and not only to a patch of limited area. For tracers with a slow air-sea exchange rate such as 14C a Robin-type boundary condition is more relevant and for tracers such as δ18O that enter the ocean from melt water, a Neumann boundary condition is presumably more relevant. Our three-dimensional model results based Correspondence to: F. Primeau ([email protected]) on a steady-state modern circulation suggest that the relative disequilibrium between the deep Atlantic and Pacific is on the order of “only” 1200 years or less for a Neumann boundary condition and does not depend on the size and location of the patch where the tracer is injected.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical modeling of the association between pervasive precipitation anomalies in Southern Alburz and global ocean-atmospheric patterns

Precipitation patterns are influenced by many factors, such as global atmospheric circulations to name but one. Precipitation patterns in Iran have always had great fluctuations even in a smaller scale like the Alburz Mountain Range. The present research has tried to find the relationship between global atmospheric patterns and the pervasive precipitation ones in Alburz. For doing so, 17 climat...

متن کامل

Statistical modeling of the association between pervasive precipitation anomalies in Southern Alburz and global ocean-atmospheric patterns

Precipitation patterns are influenced by many factors, such as global atmospheric circulations to name but one. Precipitation patterns in Iran have always had great fluctuations even in a smaller scale like the Alburz Mountain Range. The present research has tried to find the relationship between global atmospheric patterns and the pervasive precipitation ones in Alburz. For doing so, 17 climat...

متن کامل

How long to oceanic tracer and proxy equilibrium?

The various time scales for distribution of tracers and proxies in the global ocean are critical to the interpretation of data from deepsea cores. To obtain some basic physical insight into their behavior, a global ocean circulation model, forced to least-square consistency with modern data, is used to find lower bounds for the time taken by surface-injected passive tracers to reach equilibrium...

متن کامل

Evaluating the performance of Atmosphere-Ocean Global Circulation Models (AOGCM) in simulating temperature variable in Ahwaz and Abadan stations

Climate changes caused by global warming has presented challenges to human society. Studying the Changes of climate variables in the future decades by using output data’s of Atmosphere-Ocean Global Circulation Models (AOGCM) is a way of perusing climate fluctuation in a region. In this study, the focus is on the AOGCM proceeds in simulating of variable temperature in Ahwaz and Abadan stations. ...

متن کامل

Statistical Analysis of Relationships between Monthly Maximum Temperatures in Iran and Global Mean Land-Ocean Temperature Anomalies

Global warming and the meaningful relationship between temperature and precipitation changes over different areas of the earth with temperature increment of the earth, are considered as the most important patterns of this century’s climate changes. Today, there is debate over climate change and global temperatures increasing. Damaging effects of this phenomenon on the planet is one of the most ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009