Experimental and theoretical study of the contact mechanics of five total knee joint replacements.

نویسندگان

  • T Stewart
  • Z M Jin
  • D Shaw
  • D D Auger
  • M Stone
  • J Fisher
چکیده

The tibio-femoral contact area in five current popular total knee joint replacements has been measured using pressure-sensitive film under a normal load of 2.5 kN and at several angles of flexion. The corresponding maximum contact pressure has been estimated from the measured contact areas and found to exceed the point at which plastic deformation is expected in the ultra-high molecular weight polyethylene (UHMWPE) component, particularly at flexion angles near 90 degrees. The measured contact area and the estimated maximum contact stress have been found to be similar in magnitude for all of the five knee joint replacements tested. A significant difference, however, has been found in maximum contact pressure predicted from linear elasticity analysis for the different knee joints. This indicates that varying amounts of plastic deformation occurred in the polyethylene component in the different knee designs. It is important to know the extent of damage as knees with large amounts of plastic deformation are more likely to suffer low cycle fatigue failure. It is therefore concluded that the measurement of contact areas alone can be misleading in the design of and deformation in total knee joint replacements. It is important to modify geometries to reduce the maximum contact stress as predicted from the linear elasticity analysis, to below the linear elastic limit of the plastic component.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Biomechanical Effect of Loading Speed on Metal-on-UHMWPE Contact Mechanics

Ultra high molecular weight polyethylene (UHMWPE) is a material commonly used in total hip and knee joint replacements. Numerous studies have assessed the effect of its viscoelastic properties on phenomena such as creep, stress relaxation, and tensile stress. However, these investigations either use the complex 3D geometries of total hip and knee replacements or UHMWPE test objects on their own...

متن کامل

The Effects of Negative Heel Rocker Shoes on the Moment and the Contact Forces Applied on Lower Limb Joints of Diabetic Patients During Walking

Purpose: The negative heel rocker shoes help reduce the plantar pressure in patients with diabetes, but their effects on the other lower limb joints are unknown. Accordingly, the current study aimed at evaluating the effect of negative heel rocker shoes on the moment and the contact forces applied on lower limb joints of diabetic patients while walking. Methods: A total of 10 patients with dia...

متن کامل

MOBILE and the provision of total joint replacement.

Modern joint replacements have been available for 45 years, but we still do not have clear indications for these interventions, and we do not know how to optimize the outcome for patients who agree to have them done. The MOBILE programme has been investigating these issues in relation to primary total hip and knee joint replacements, using mixed methods research. There have been five main stran...

متن کامل

Investigation of Wear Behavior of Biopolymers for Total Knee Replacements Through Invitro Experimentation

The average life span of knee prosthesis used in Total Knee Replacement (TKR) is approximately 10 to 15 years. Literature indicates that the reasons for implant failures include wear, infection, instability, and stiffness. However, the majority of failures are due to wear and tear of the prosthesis. The most common biopolymer used in TKR  is Ultra High Molecular Weight Polyethylene (UHMWPE). Pr...

متن کامل

Nonlinear lap joint interface modeling and updating strategies for assembled structures

A comparison between two known strategies of modeling lap joint interfaces, namely, zero-thickness and thin layer interface theories and their associated updating procedures, is made. Finite element...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine

دوره 209 4  شماره 

صفحات  -

تاریخ انتشار 1995