The ALK-2 and ALK-4 activin receptors transduce distinct mesoderm-inducing signals during early Xenopus development but do not co-operate to establish thresholds.

نویسندگان

  • N A Armes
  • J C Smith
چکیده

The TGFbeta family member activin induces different mesodermal cell types in a dose-dependent fashion in the Xenopus animal cap assay. High concentrations of activin induce dorsal and anterior cell types such as notochord and muscle, while low concentrations induce ventral and posterior tissues such as mesenchyme and mesothelium. In this paper we investigate whether this threshold phenomenon involves the differential effects of the two type I activin receptors ALK-2 and ALK-4. Injection of RNA encoding constitutively active forms of the receptors (here designated ALK-2* and ALK-4*) reveals that ALK-4* strongly induces the more posterior mesodermal marker Xbra and the dorsoanterior marker goosecoid in animal cap explants. Maximal levels of Xbra expression are attained using lower concentrations of RNA than are required for the strongest activation of goosecoid, and at the highest doses of ALK-4*, levels of Xbra transcription decrease, as is seen with high concentrations of activin. By contrast, the ALK-2* receptor activates Xbra but fails to induce goosecoid to significant levels. Analysis at later stages reveals that ALK-4* signalling induces the formation of a variety of mesodermal derivatives, including dorsal cell types, in a dose-dependent fashion, and that high levels also induce endoderm. By contrast, the ALK-2* receptor induces only ventral mesodermal markers. Consistent with these observations, ALK-4* is capable of inducing a secondary axis when injected into the ventral side of 32-cell stage embryos whilst ALK-2* cannot. Co-injection of RNAs encoding constitutively active forms of both receptors reveals that ventralising signals from ALK-2* antagonise the dorsal mesoderm-inducing signal derived from ALK-4*, suggesting that the two receptors use distinct and interfering signalling pathways. Together, these results show that although ALK-2* and ALK-4* transduce distinct signals, the threshold responses characteristic of activin cannot be due to interactions between these two pathways; rather, thresholds can be established by ALK-4* alone. Furthermore, the effects of ALK-2* signalling are at odds with it behaving as an activin receptor in the early Xenopus embryo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FGF is a prospective competence factor for early activin-type signals in Xenopus mesoderm induction.

Normal pattern formation during embryonic development requires the regulation of cellular competence to respond to inductive signals. In the Xenopus blastula, vegetal cells release mesoderm-inducing factors but themselves become endoderm, suggesting that vegetal cells may be prevented from expressing mesodermal genes in response to the signals that they secrete. We show here that addition of lo...

متن کامل

Negative regulation of Activin/Nodal signaling by SRF during Xenopus gastrulation.

Activin/Nodal signaling is essential for germ-layer formation and axial patterning during embryogenesis. Recent evidence has demonstrated that the intra- or extracellular inhibition of this signaling is crucial for ectoderm specification and correct positioning of mesoderm and endoderm. Here, we analyzed the function of Xenopus serum response factor (XSRF) in establishing germ layers during ear...

متن کامل

Ventral mesoderm induction and patterning by bone morphogenetic protein heterodimers in Xenopus embryos

Bone morphogenetic proteins (BMPs) perform diverse functions in vertebrate development. Here we demonstrate that the heterodimeric BMP-4/7 protein directly induces ventral mesoderm and blood in Xenopus animal caps, and BMP-2/7 heterodimers may function similarly. We also provide indirect evidence that BMP heterodimers function in embryos, using assays with dominant-negative BMP ligands. Homodim...

متن کامل

Differential effects on Xenopus development of interference with type IIA and type IIB activin receptors

One candidate for a mesoderm-inducing factor in early amphibian development is activin, a member of the TGF beta family. Overexpression of a truncated form of an activin receptor Type IIB abolishes activin responsiveness and mesoderm formation in vivo. The Xenopus Type IIA activin receptor XSTK9 differs from the Type IIB receptor by 43 and 25% in extracellular and intracellular domains respecti...

متن کامل

Xnrs and Activin Regulate Distinct Genes during Xenopus Development: Activin Regulates Cell Division

BACKGROUND The mesoderm of the amphibian embryo is formed through an inductive interaction in which vegetal cells of the blastula-staged embryo act on overlying equatorial cells. Candidate mesoderm-inducing factors include members of the transforming growth factor type beta family such as Vg1, activin B, the nodal-related proteins and derrière. METHODOLOGY AND PRINCIPLE FINDINGS Microarray an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 124 19  شماره 

صفحات  -

تاریخ انتشار 1997