Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells.
نویسندگان
چکیده
A synergistic effect between anatase and rutile TiO2 is known, in which the addition of rutile can remarkably enhance the photocatalytic activity of anatase in the degradation of organic contaminants. In this study, mixed-phase TiO2 nanocomposites consisting of anatase and rutile nanoparticles (NPs) were prepared for use as photoanodes in dye-sensitized solar cells (DSSCs) and were characterized by using UV-vis spectroscopy, powder X-ray diffraction and scanning electron microscopy. The addition of 10-15% rutile significantly improved light harvesting and the overall solar conversion efficiency of anatase NPs in DSSCs. The underlying mechanism for the synergistic effect in DSSCs is now explored by using time-resolved terahertz spectroscopy. It is clearly demonstrated that photo-excited electrons injected into the rutile NPs can migrate to the conduction band of anatase NPs, enhancing the photocurrent and efficiency. Interfacial electron transfer from rutile to anatase, similar to that in heterogeneous photocatalysis, is proposed to account for the synergistic effect in DSSCs. Our results further suggest that the synergistic effect can be used to explain the beneficial effect of TiCl4 treatment on DSSC efficiency.
منابع مشابه
The investigation on different light harvesting layers and their sufficient effect on the photovoltaic characteristics in dye sensitized solar cell
Titanium dioxide-based nanofibers (TiO2 nanofiber) were prepared by an electrospinning technique. The electrospun composite fibers were synthesized at different concentrations of titanium isopropoxide (25.35, 50.69, 76.05 wt%) and calcinated at different temperatures (450 oC, 650 oC and 850 oC) for 2 h. The diameters of nanofibers decreased by increas...
متن کاملEnhancement of Dye-Sensitized Solar Cells Efficiency Using Mixed-Phase TiO2 Nanoparticles as Photoanode
Dye-sensitized solar cell (DSSC) is a potential candidate to replace conventional silicon-based solar cells because of high efficiency, cheap cost, and lower energy consumption in comparison with silicon chip manufacture. In this report, mixed-phase (anatase and rutile nanoparticles) TiO2 photoanode was synthesized to investigate material characteristics, carriers transport, and photovoltaic pe...
متن کاملHigh Efficient Transparent TiO2 Nanotube Dye-Sensitized Solar Cells: Adhesion of TiO2 Nanotube Membrane to FTO by Two Different Methods
In order to fabricate transparent TiO2 nanotube dye-sensitized solar cells, anodically growth nanotube membranes are detached from Ti substrate by a re-anodization method. The membranes are transferred on FTO glass by two different methods. At the first one, 100mM Ti-isopropoxide is used to make TiO2 nanoparticles for adhering TiO2 nanotube membranes to FTO and ...
متن کاملAnatase TiO2 Nanoparticles with Exposed {001} Facets for Efficient Dye-Sensitized Solar Cells
Anatase TiO2 nanoparticles with exposed {001} facets were synthesized from Ti powder via a sequential hydrothermal reaction process. At the first-step hydrothermal reaction, H-titanate nanowires were obtained in NaOH solution with Ti powder, and at second-step hydrothermal reaction, anatase TiO2 nanoparticles with exposed {001} facets were formed in NH4F solution. If the second-step hydrotherma...
متن کاملD-sorbitol-induced phase control of TiO2 nanoparticles and its application for dye-sensitized solar cells.
Using a simple hydrothermal synthesis, the crystal structure of TiO2 nanoparticles was controlled from rutile to anatase using a sugar alcohol, D-sorbitol. Adding small amounts of D-sorbitol to an aqueous TiCl4 solution resulted in changes in the crystal phase, particle size, and surface area by affecting the hydrolysis rate of TiCl4. These changes led to improvements of the solar-to-electrical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dalton transactions
دوره 45 شماره
صفحات -
تاریخ انتشار 2009