A metastable DWARF1 epigenetic mutant affecting plant stature in rice.

نویسندگان

  • Kotaro Miura
  • Masakazu Agetsuma
  • Hidemi Kitano
  • Atsushi Yoshimura
  • Makoto Matsuoka
  • Steven E Jacobsen
  • Motoyuki Ashikari
چکیده

Epigenetic mutations confer heritable changes in gene expression that are not due to changes in the underlying sequence of the DNA. We identified a spontaneous rice mutant, Epi-d1, that shows a metastable dwarf phenotype. The phenotype is mitotically and meiotically inheritable and corresponds to the metastable epigenetic silencing of the DWARF1 (D1) gene. The silenced state is correlated with repressive histone and DNA methylation marks in the D1 promoter region but is not associated with DNA sequence alterations. Compared with other known epigenetic silenced loci in plants such as paramutable maize alleles and silent Arabidopsis genes, the Epi-d1 silencing phenomenon shows a high level of bidirectional metastable mutability. Epigenetic alleles such as Epi-d1 could thus provide for rapid adaptation under selective conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone.

We have identified a rice (Oryza sativa) brassinosteroid (BR)-deficient mutant, BR-deficient dwarf2 (brd2). The brd2 locus contains a single base deletion in the coding region of Dim/dwf1, a homolog of Arabidopsis thaliana DIMINUTO/DWARF1 (DIM/DWF1). Introduction of the wild-type Dim/dwf1 gene into brd2 restored the normal phenotype. Overproduction and repression of Dim/dwf1 resulted in contras...

متن کامل

The pleiotropic ABNORMAL FLOWER AND DWARF1 affects plant height, floral development and grain yield in rice

Moderate plant height and successful establishment of reproductive organs play pivotal roles in rice grain production. The molecular mechanism that controls the two aspects remains unclear in rice. In the present study, we characterized a rice gene, ABNORMAL FLOWER AND DWARF1 (AFD1) that determined plant height, floral development and grain yield. The afd1 mutant showed variable defects includi...

متن کامل

Genetic interaction between 2 tillering genes, reduced culm number 1 (rcn1) and tillering dwarf gene d3, in rice.

Mutant genes, reduced culm number 1 (rcn1) and bunketsuwaito tillering dwarf (d3), affect tiller number in rice (Oryza sativa L.) in opposite directions. The d3 mutant was reported to increase tiller number and reduce plant stature. Our objective was to compare the phenotype of the d3rcn1 double mutant with each single mutant and parental rice cultivar "Shiokari" and to clarify whether the Rcn1...

متن کامل

Determination of QTLs Controlling Agronomical Traits in Rice Population Derived from Cross of Tarom Landrace and Tarom Mutant

In order to identify QTLs controlling agronomically traits, landrace Tarom and rice Tarom mutant were crossed. SSR, ISSR, iPBS and IRAP markers were amplified in 250 F2 individuals to prepare the linkage map. Number of tillers, 100 grain weight, number of filled grains, number of unfilled grains, plant height, panicle length, number of branches, stem diameter, grain length, grain width, grain s...

متن کامل

Evaluation of salinity response through the antioxidant defense system and osmolyte accumulation in a mutant rice

In order to assess the responses of Hashemi rice genotype and its advanced mutant line under salinity stress of 100 mM Sodium chloride (NaCl) for three and six days the shoot samples were taken for biochemical analysis. This experiment was performed in split plot based on randomized complete block design with three replications. The main factor was factorial combination of saline treatmen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 27  شماره 

صفحات  -

تاریخ انتشار 2009