THE TATE CONJECTURE FOR A FAMILY OF SURFACES OF GENERAL TYPE WITH pg

نویسنده

  • CHRISTOPHER LYONS
چکیده

We prove a big monodromy result for a smooth family of complex algebraic surfaces of general type, with invariants pg = q = 1 and K 2 = 3, that has been introduced by Catanese and Ciliberto. This is accomplished via a careful study of degenerations. As corollaries, when a surface in this family is defined over a finitely generated extension of Q, we verify the semisimplicity and Tate conjectures for the Galois representation on the middle `-adic cohomology of the surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Surfaces of General Type for Which Bloch’s Conjecture Holds

We give many examples of surfaces of general type with pg = 0 for which Bloch’s conjecture holds, for all values of K2 6= 9. Our surfaces are equipped with an involution. Let S be a smooth complex projective surface with pg(S) = 0. Bloch’s conjecture states that the Albanese map A0(S)0 → Alb(S) is an isomorphism, where A0(S)0 is the Chow group of 0-cycles of degree 0 on S. It is known for all s...

متن کامل

2 00 1 Surfaces with p g = q = 2 and an irrational pencil

We classify all the irrational pencils over the surfaces of general type with pg = q = 2; as a byproduct it gives an evidence for the Catanese conjecture on surfaces of general type with pg = q = 2.

متن کامل

Bloch’s conjecture for Catanese and Barlow surfaces

Catanese surfaces are regular surfaces of general type with pg = 0. They specialize to double covers of Barlow surfaces. We prove that the CH0 group of a Catanese surface is equal to Z, which implies the same result for the Barlow surfaces.

متن کامل

A SURFACE OVER Q WITH p g = q = 1 , K 2 = 2 AND MINIMAL PICARD NUMBER

Following an idea of Ishida, we develop polynomial equations for certain unramified double covers of surfaces with pg = q = 1 and K 2 = 2. Our first main result is to show the existence of a surface X with these invariants defined over Q that has the smallest possible Picard number ρ(X) = 2. This is done by giving equations for the double cover X̃ of X, calculating the zeta function of the reduc...

متن کامل

Frankl's Conjecture for a subclass of semimodular lattices

 In this paper, we prove Frankl's Conjecture for an upper semimodular lattice $L$ such that $|J(L)setminus A(L)| leq 3$, where $J(L)$ and $A(L)$ are the set of join-irreducible elements and the set of atoms respectively. It is known that the class of planar lattices is contained in the class of dismantlable lattices and the class of dismantlable lattices is contained in the class of lattices ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014