Molecular insight into the high selectivity of double-walled carbon nanotubes.

نویسنده

  • Piotr Kowalczyk
چکیده

Combining experimental knowledge with molecular simulations, we investigated the adsorption and separation properties of double-walled carbon nanotubes (DWNTs) against flue/synthetic gas mixture components (e.g. CO(2), CO, N(2), H(2), O(2), and CH(4)) at 300 K. Except molecular H(2), all studied nonpolar adsorbates assemble into single-file chain structures inside DWNTs at operating pressures below 1 MPa. Molecular wires of adsorbed molecules are stabilized by the strong solid-fluid potential generated from the cylindrical carbon walls. CO(2) assembly is formed at very low operating pressures in comparison to all other studied nonpolar adsorbates. The adsorption lock-and-key mechanism results from perfect fitting of rod-shaped CO(2) molecules into the cylindrical carbon pores. The enthalpy of CO(2) adsorption in DWNTs is very high and reaches 50 kJ mol(-1) at 300 K and low pore concentrations. In contrast, adsorption enthalpy at zero coverage is significantly lower for all other studied nonpolar adsorbates, for instance: 35 kJ mol(-1) for CH(4), and 14 kJ mol(-1) for H(2). Applying the ideal adsorption solution theory, we predicted that the internal pores of DWNTs have unusual ability to differentiate CO(2) molecules from other flue/synthetic gas mixture components (e.g. CO, N(2), H(2), O(2), and CH(4)) at ambient operating conditions. Computed equilibrium selectivity for equimolar CO(2)-X binary mixtures (where X: CO, N(2), H(2), O(2), and CH(4)) is very high at low mixture pressures. With an increase in binary mixture pressure, we predicted a decrease in equilibrium separation factor because of the competitive adsorption of the X binary mixture component. We showed that at 300 K and equimolar mixture pressures up to 1 MPa, the CO(2)-X equilibrium separation factor is higher than 10 for all studied binary mixtures, indicating strong preference for CO(2) adsorption. The overall selective properties of DWNTs seem to be superior, which may be beneficial for potential industrial applications of these novel carbon nanostructures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical insights into the encapsulation of anticancer Oxaliplatin drug into single walled carbon nanotubes

The present work was an attempt to evaluate the potentialities of using SWCNTs as nanovectors for drug delivery of anticancer drug Oxaliplatin. First-principles van der Waals density functional (vdW-DF) calculations are used to investigate the incorporation of oxaliplatin inside the typical semiconducting and metallic single wall carbon nanotubes with various diameters (SWCNTs). Adsorption ener...

متن کامل

A First-Principles Study on Interaction between Carbon Nanotubes (10,10) and Gallates Derivatives as Vehicles for Drug Delivery

First principles calculations were carried out for investigation the novel 7-hydroxycoumarinyl gallates derivatives in gas and liquid phases using density functional theory (DFT) method. Computational chemistry simulations were carried out to compare calculated quantum chemical parameters for gallates derivatives. All calculations were performed using DMol3 code which is based on DFT. The Doubl...

متن کامل

Direct synthesis of single-walled aminoaluminosilicate nanotubes with enhanced molecular adsorption selectivity.

Internal functionalization of single-walled nanotubes is an attractive, yet difficult challenge in nanotube materials chemistry. Here we report single-walled metal oxide nanotubes with covalently bonded primary amine moieties on their inner wall, synthesized through a one-step approach. Conclusive molecular-level structural information on the amine-functionalized nanotubes is obtained through m...

متن کامل

Molecular Dynamics Investigation of The Elastic Constants and Moduli of Single Walled Carbon Nanotubes

Determination of the mechanical properties of carbon nanotubes is an essential step in their applications from macroscopic composites to nano-electro-mechanical systems. In this paper we report the results of a series of molecular dynamics simulations carried out to predict the elastic constants, i.e. the elements of the stiffness tensor, and the elastic moduli, namely the Young’s and shear mod...

متن کامل

Analytical Spring-Mass Model of Impact Behavior of Double-Walled Carbon Nanotubes

In this study, an impact behavior of spherical striker on a double-walled carbon nanotube (DWCNT) is presented based on a three degree of freedom spring-mass model and the finite element (FE) simulations. The semi-analytical solution of the transverse impact of a striker on a DWCNT is investigated by using the elasticity nonlocal theory of Euler-Bernoulli (EBT) and Timoshenko (TBT) nanobeams. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 14 8  شماره 

صفحات  -

تاریخ انتشار 2012