K+ deprivation induces xylem water and K+ transport in sunflower: evidence for a co-ordinated control.
نویسندگان
چکیده
The effect of K+ deprivation on water and K+ transport in roots was studied in sunflower plants. Deprivation was achieved in two different ways: by removing K+ from the growth medium for varying intervals; and by growing plants permanently in a low-K+ medium. Removal of K+ from the growth medium for a few hours prompted a significant increase in xylem sap exudation, associated with an increase in root hydraulic conductivity; however, it did not give rise to any significant change in plant K+ content, nor did it favour root K+ exudation. By contrast, prolonged K+ deprivation led to a decline in the internal K+ content and stimulated water and K+ transport in roots. Leaf application of K+ (Rb+) in plants grown permanently in a low-K+ medium inhibited the effect of K+ deprivation on root water and K+ transport, without significantly modifying the internal K+ content of the plants. This treatment had no effect on normal-K+ plants. These results suggest the existence of mechanisms enabling perception of plant K+ status and/or K+ availability in the medium, which trigger transduction processes governing the transport of water and K+ from the root to the shoot.
منابع مشابه
Co-ordinated development of the leaf midrib xylem with the lamina in Nicotiana tabacum.
BACKGROUND AND AIMS The water-transport capacity of leaf venation is positively related to the leaf-lamina area, because the number and diameter of vein-xylem conduits are controlled to match the lamina area. This study aimed to investigate how this co-ordinated relationship between the leaf-lamina area and vein-xylem characteristics is achieved by examining the midrib xylem of tobacco leaves. ...
متن کاملThe significance of water co-transport for sustaining transpirational water flow in plants: a quantitative approach
In a recent Opinion paper, Wegner (Journal of Experimental Botany 65, 381–392, 2014) adapts a concept developed for water flow in animal tissues to propose a model, which can explain the loading of water into the root xylem against a difference in water potential (Ψ) between the xylem parenchyma cell (more negative Ψ) and the xylem vessel (less negative Ψ). In this model, the transport of water...
متن کاملThe significance of water co-transport for sustaining transpirational water flow in plants: a quantitative approach.
In a recent Opinion paper, Wegner (Journal of Experimental Botany 65, 381-392, 2014) adapts a concept developed for water flow in animal tissues to propose a model, which can explain the loading of water into the root xylem against a difference in water potential (Ψ) between the xylem parenchyma cell (more negative Ψ) and the xylem vessel (less negative Ψ). In this model, the transport of water...
متن کاملRole of the node in controlling traffic of cadmium, zinc, and manganese in rice
Heavy metals are transported to rice grains via the phloem. In rice nodes, the diffuse vascular bundles (DVBs), which enclose the enlarged elliptical vascular bundles (EVBs), are connected to the panicle and have a morphological feature that facilitates xylem-to-phloem transfer. To find a mechanism for restricting cadmium (Cd) transport into grains, the distribution of Cd, zinc (Zn), manganese ...
متن کاملThe ‘hydrology’ of leaves: co-ordination of structure and function in temperate woody species
The hydraulic conductance of the leaf lamina ( K lamina ) substantially constrains whole-plant water transport, but little is known of its association with leaf structure and function. K lamina was measured for sun and shade leaves of six woody temperate species growing in moist soil, and tested for correlation with the prevailing leaf irradiance, and with 22 other leaf traits. K lamina varied ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of experimental botany
دوره 61 1 شماره
صفحات -
تاریخ انتشار 2010