The Open University ’ s repository of research publications and other research outputs A words - of - interest model of sketch representation for image retrieval

نویسندگان

  • Xi Luo
  • Wen-Jin Guo
  • Yong-Jin Liu
  • Cui-Xia Ma
  • Da-Wei Song
چکیده

In this paper we propose a method for sketch-based image retrieval. Sketch is a magical medium which is capable of conveying semantic messages for user. It’s in accordance with user’s cognitive psychology to retrieve images with sketch. In order to narrow down the semantic gap between the user and the images in database, we preprocess all the images into sketches by the coherent line drawing algorithm. During the process of sketches extraction, saliency maps are used to filter out the redundant background information, while preserve the important semantic information. We use a variant of Words-ofInterest model to retrieve relevant images for the user according to the query. Words-of-Interest (WoI) model is based on Bag-ofvisual Words (BoW) model, which has been proven successfully for information retrieval. Bag-of-Words ignores the spatial relationships among visual words, which are important for sketch representation. Our method takes advantage of the spatial information of the query to select words of interest. Experimental results demonstrate that our sketch-based retrieval method achieves a good tradeoff between retrieval accuracy and semantic representation of users’ query. Keywords— Image retrieval, Sketch representation, Bag-ofvisual Words model, Words-of-Interest model, Markov chain model

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

research publications and other research outputs A words - of - interest model of sketch representation for image retrieval

In this paper we propose a method for sketch-based image retrieval. Sketch is a magical medium which is capable of conveying semantic messages for user. It’s in accordance with user’s cognitive psychology to retrieve images with sketch. In order to narrow down the semantic gap between the user and the images in database, we preprocess all the images into sketches by the coherent line drawing al...

متن کامل

The Open University ’ s repository of research publications and other research outputs Dissimilarity measures for content - based image retrieval

Dissimilarity measurement plays a crucial role in contentbased image retrieval. In this paper, 16 core dissimilarity measures are introduced and evaluated. We carry out a systematic performance comparison on three image collections, Corel, Getty and Trecvid2003, with 7 different feature spaces. Two search scenarios are considered: single image queries based on the Vector Space Model, and multi-...

متن کامل

The Open University ’ s repository of research publications and other research outputs Forecast covariances in the linear multiregression dynamic model

The Open University's repository of research publications and other research outputs Forecast covariances in the linear multiregression dynamic model Journal Article

متن کامل

The Open University ’ s repository of research publications and other research outputs Forecast covariances in the linear multiregression dynamic

The Open University's repository of research publications and other research outputs Forecast covariances in the linear multiregression dynamic model Journal Article

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016