Image coding using lapped biorthogonal transform
نویسندگان
چکیده
The wireless sensor network utilizes image compression algorithms like JPEG, JPEG2000, and SPIHT for image transmission with high coding efficiency. During compression, discrete cosine transform (DCT)–based JPEG has blocking artifacts at low bit-rates. But this effect is reduced by discrete wavelet transform (DWT)–based JPEG2000 and SPIHT algorithm but it possess high computational complexity. This paper proposes an efficient lapped biorthogonal transform (LBT)–based low-complexity zerotree codec (LZC), an entropy coder for image coding algorithm to achieve high compression. The LBT-LZC algorithm yields high compression, better visual quality with low computational complexity. The performance of the proposed method is compared with other popular coding schemes based on LBT, DCT and wavelet transforms. The simulation results reveal that the proposed algorithm reduces the blocking artifacts and achieves high compression. Besides, it is analyzed for noise resilience.
منابع مشابه
Biorthogonal and nonuniform lapped transforms for transform coding with reduced blocking and ringing artifacts
New lapped transforms are introduced. The LBT (lapped biorthogonal transform), and HLBT (hierarchical lapped biorthogonal transform) are appropriate for image coding, and the MLBT (modulated lapped biorthogonal transform) and NMLBT (nonuniform modulated lapped biorthogonal transform) are appropriate for audio coding. The HLBT has a significantly lower computational complexity than the LOT (lapp...
متن کاملLapped biorthogonal transforms for transform coding with reduced blocking and ringing artifacts
Two new lapped transforms are introduced: the LBT (lapped biorthogonal transform) and the HLBT (hierarchical lapped biorthogonal transform). The LBT has the same computational complexity of the LOT (lapped orthogonal transform), with much less blocking artifacts. The HLBT has a significantly lower computational complexity than the LOT, essentially no blocking artifacts, and less ringing artifac...
متن کاملA biorthogonal transform with overlapping and non-overlapping basis functions for image coding
This paper presents a new framework for a biorthogonal lapped transform that consists of long and short basis functions called the VLLBT. It is shown that when the biorthogonal long basis functions of the VLLBT are given, the optimal short basis functions in the energy compaction sense are derived by solving an eigenvalue problem without iterative searching techniques. We also provide design an...
متن کاملInteger lapped transforms and their applications to image coding
This paper proposes new integer approximations of the lapped transforms, called the integer lapped transforms (ILT), and studies their applications to image coding. The ILT are derived from a set of orthogonal sinusoidal transforms having short integer coefficients, which can be implemented with simple integer arithmetic. By employing the same scaling constants in these integer sinusoidal trans...
متن کاملA Fast Lapped Transform for Image Coding
This paper introduces a class of linear phase lapped biorthogonal transforms with basis functions of variable length. A lattice is used to enforce both linear phase and perfect reconstruction properties as well as to provide a fast and efficient transform implementation for image coding applications. In the proposed formulation which we call fast lapped transform (FLT), the higher frequency fil...
متن کاملStatistical Distributions of the Lapped Transform Coefficients for Images
Discrete Cosine Transform (DCT) based transform coding is very popular in image, video and speech compression due to its good energy compaction and decorrelating properties. However, at low bit rates, the reconstructed images generally suffer from visually annoying blocking artifacts as a result of coarse quantization. Lapped transform was proposed as an alternative to the DCT with reduced bloc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Signal, Image and Video Processing
دوره 7 شماره
صفحات -
تاریخ انتشار 2013