Pulsatile shear and Gja5 modulate arterial identity and remodeling events during flow-driven arteriogenesis.

نویسندگان

  • Ivo Buschmann
  • Axel Pries
  • Beata Styp-Rekowska
  • Philipp Hillmeister
  • Laurent Loufrani
  • Daniel Henrion
  • Yu Shi
  • Andre Duelsner
  • Imo Hoefer
  • Nora Gatzke
  • Haitao Wang
  • Kerstin Lehmann
  • Lena Ulm
  • Zully Ritter
  • Peter Hauff
  • Ruslan Hlushchuk
  • Valentin Djonov
  • Toon van Veen
  • Ferdinand le Noble
چکیده

In the developing chicken embryo yolk sac vasculature, the expression of arterial identity genes requires arterial hemodynamic conditions. We hypothesize that arterial flow must provide a unique signal that is relevant for supporting arterial identity gene expression and is absent in veins. We analyzed factors related to flow, pressure and oxygenation in the chicken embryo vitelline vasculature in vivo. The best discrimination between arteries and veins was obtained by calculating the maximal pulsatile increase in shear rate relative to the time-averaged shear rate in the same vessel: the relative pulse slope index (RPSI). RPSI was significantly higher in arteries than veins. Arterial endothelial cells exposed to pulsatile shear in vitro augmented arterial marker expression as compared with exposure to constant shear. The expression of Gja5 correlated with arterial flow patterns: the redistribution of arterial flow provoked by vitelline artery ligation resulted in flow-driven collateral arterial network formation and was associated with increased expression of Gja5. In situ hybridization in normal and ligation embryos confirmed that Gja5 expression is confined to arteries and regulated by flow. In mice, Gja5 (connexin 40) was also expressed in arteries. In the adult, increased flow drives arteriogenesis and the formation of collateral arterial networks in peripheral occlusive diseases. Genetic ablation of Gja5 function in mice resulted in reduced arteriogenesis in two occlusion models. We conclude that pulsatile shear patterns may be central for supporting arterial identity, and that arterial Gja5 expression plays a functional role in flow-driven arteriogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metalloproteinases, Mechanical Factors and Vascular Remodeling

Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...

متن کامل

Newtonian and Non-Newtonian Blood Flow Simulation after Arterial Stenosis- Steady State and Pulsatile Approaches

Arterial stenosis, for example Atherosclerosis, is one of the most serious forms of arterial disease in the formation of which hemodynamic factors play a significant role. In the present study, a 3-D rigid carotid artery with axisymmetric stenosis with 75% reduction in cross-sectional area is considered. Laminar blood flow is assumed to have both Newtonian and non-Newtonian behavior (generalize...

متن کامل

Endothelial Shc regulates arteriogenesis through dual control of arterial specification and inflammation via the notch and nuclear factor-κ-light-chain-enhancer of activated B-cell pathways.

RATIONALE Arteriogenesis, the shear stress-driven remodeling of collateral arteries, is critical in restoring blood flow to ischemic tissue after a vascular occlusion. Our previous work has shown that the adaptor protein Shc mediates endothelial responses to shear stress in vitro. OBJECTIVE To examine the role of the adaptor protein Shc in arteriogenesis and endothelial-dependent responses to...

متن کامل

Impact of Blood Vessel Wall Flexibility on the Temperature and Concentration Dispersion

The analysis of solute and thermal dispersion in pulsatile flow through the stenotic tapered blood vessel is presented. The present problem is an extension of the work done by Ramana et al. who considered the time-invariant arterial wall. In the present model, the flexible nature of the arterial wall through the obstruction (called stenosis) is considered and it is achieved with the he...

متن کامل

Study of Pulsatile Non-Newtonian Blood Flow Through Abdominal Aorta and Renal Arteries Incorporating Fluid- Structure Interaction

Background: The interaction between the blood and the vessel wall is of great clinical interest in studying cardiovascular diseases, the major causes of death in developed countries.Objective: To understand the effects of incorporating fluid-structure interaction into the simulation of blood flow through an anatomically realistic model of abdominal aorta and renal arteries reconstructed from CT...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 137 13  شماره 

صفحات  -

تاریخ انتشار 2010