Protective Effects of Acetylation on the Pathological Reactions of the Lens Crystallins with Homocysteine Thiolactone

نویسندگان

  • Zeinab Moafian
  • Kazem Khoshaman
  • Ahmad Oryan
  • Boris I. Kurganov
  • Reza Yousefi
چکیده

Various post-translational lens crystallins modifications result in structural and functional insults, contributing to the development of lens opacity and cataract disorders. Lens crystallins are potential targets of homocysteinylation, particularly under hyperhomocysteinemia which has been indicated in various eye diseases. Since both homocysteinylation and acetylation primarily occur on protein free amino groups, we applied different spectroscopic methods and gel mobility shift analysis to examine the possible preventive role of acetylation against homocysteinylation. Lens crystallins were extensively acetylated in the presence of acetic anhydride and then subjected to homocysteinylation in the presence of homocysteine thiolactone (HCTL). Extensive acetylation of the lens crystallins results in partial structural alteration and enhancement of their stability, as well as improvement of α-crystallin chaperone-like activity. In addition, acetylation partially prevents HCTL-induced structural alteration and aggregation of lens crystallins. Also, acetylation protects against HCTL-induced loss of α-crystallin chaperone activity. Additionally, subsequent acetylation and homocysteinylation cause significant proteolytic degradation of crystallins. Therefore, further experimentation is required in order to judge effectively the preventative role of acetylation on the structural and functional insults induced by homocysteinylation of lens crystallins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium-dependent human serum homocysteine thiolactone hydrolase. A protective mechanism against protein N-homocysteinylation.

Homocysteine thiolactone is formed in all cell types studied thus far as a result of editing reactions of some aminoacyl-tRNA synthetases. Because inadvertent reactions of thiolactone with proteins are potentially harmful, the ability to detoxify homocysteine thiolactone is essential for biological integrity. This work shows that a single specific enzyme, present in mammalian but not in avian s...

متن کامل

An in vitro evaluation of the effects of homocysteine thiolactone on key steps of angiogenesis and tumor invasion.

Homocysteine thiolactone is a highly reactive homocysteine derivative that can react easily with proteins. Protein homocysteinylation has been suggested as a possible mechanism underlying the pathological consequences of impaired homocysteine metabolism. Homocysteine inhibits key steps of angiogenesis and tumor invasion. It can be hypothesized that homocysteine thiolactone could mimic the descr...

متن کامل

Crosstalk of homocysteinylation, methylation and acetylation on histone H3.

Homocysteine (hcy) is an intermediate metabolite in the metabolic pathway of cysteine and methionine. As a non-coded amino acid, hcy is not normally incorporated into protein. However, homocysteine can be recognized and activated by methionyl-tRNA synthetase (MetRs) to produce Hcy-thiolactone (HTL), which can react with the ε-amino group of a protein lysine residue. The N-hcy-linked protein car...

متن کامل

Metabolism of homocysteine thiolactone in human cell cultures. Possible mechanism for pathological consequences of elevated homocysteine levels.

Editing of the non-protein amino acid homocysteine, a frequent type of error-correcting process in amino acid selection for protein synthesis by an aminoacyl-tRNA synthetase, results in formation of a cyclic thioester, homocysteine thiolactone. Here it is shown that human cells in which homocysteine metabolism is deregulated by a mutation in the cystathionine beta-synthase gene and/or by an ant...

متن کامل

Generation and initial characterization of a novel polyclonal antibody directed against homocysteine thiolactone-modified low density lipoprotein.

Elevated plasma homocysteine (homocysteinemia) are presumed to be responsible for the development of coronary artery disease, however, the precise etiology is unclear. We examined the possibility that the adduct formed from the reaction between homocysteine thiolactone, a metabolic product of homocysteine, and apolipoprotein B-100 lysyl residues of low density lipoprotein (LDL) was immunogenic....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016