DNA fingerprinting differentiation between β-carotene hyperproducer strains of Dunaliella from around the world
نویسندگان
چکیده
BACKGROUND Dunaliella salina is the most important species of the genus for beta-carotene production. Several investigations have demonstrated that D. salina produces more than 10% dry weight of pigment and that the species grows in salt saturated lagoons. High plasticity in the green stage and the almost indistinguishable differences in the red phase make identification and differentiation of species and ecotypes very difficult and time consuming. RESULTS In this work, we applied our intron-sizing method to compare the 18S rDNA fingerprint between D. salina (CCAP 19/18), D. salina/bardawil (UTEX LB2538) and beta-carotene hyperproducing strains of Dunaliella isolated from salt saturated lagoons in Baja, Mexico. All hyperproducer strains reached beta-carotene levels of about 10 pg/cell. Optical microscopy did not allow to differentiate between these Dunaliella strains; however, 18S rDNA fingerprinting methodology allowed us to differentiate D. salina from D. salina/bardawil. CONCLUSION In Baja Mexico we found D. salina and D. salina/bardawil species by using intron-sizing-method. The National Center for Biotechnology Information (NCBI) Dunaliella 18S rDNA gene sequences were analyzed with our methodology and extraordinary correlation was found with experimental results.
منابع مشابه
Potential of new isolates of Dunaliella salina
The halotolerant microalga Dunaliella salina has been widely studied for natural 10 β-carotene production. This work shows biochemical characterization of three newly isolated 11 Dunaliella salina strains DF15, DF17 and DF40 compared with D. salina CCAP 19/30 (confirmed to 12 be D. tertiolecta) and D. salina UTEX 2538 (also known as D. bardawil). Although all three new strains 13 have been gene...
متن کاملStatistical Optimization of The Four Key Factors on β-Carotene Production by Dunaliella salina Under Laboratory Conditions Using Response Surface Methodology
During recent years, there was growing demand in using microalga valuable products such as β-carotene in health care. β-Carotene has anti-cancer and anti-aging properties for human. In Dunaliella salina cells, β-carotene has a major protecting role for biomolecules, when the production of reactive oxygen species elevated. In the present study, we investigated the influence of the four most effe...
متن کاملStatistical Optimization of The Four Key Factors on β-Carotene Production by Dunaliella salina Under Laboratory Conditions Using Response Surface Methodology
During recent years, there was growing demand in using microalga valuable products such as β-carotene in health care. β-Carotene has anti-cancer and anti-aging properties for human. In Dunaliella salina cells, β-carotene has a major protecting role for biomolecules, when the production of reactive oxygen species elevated. In the present study, we investigated the influence of the four most effe...
متن کاملPotential of New Isolates of Dunaliella Salina for Natural β-Carotene Production
The halotolerant microalga Dunaliella salina has been widely studied for natural β-carotene production. This work shows biochemical characterization of three newly isolated Dunaliellasalina strains, DF15, DF17, and DF40, compared with D. salina CCAP 19/30 and D. salina UTEX 2538 (also known as D. bardawil). Although all three new strains have been genetically characterized as Dunaliella salina ...
متن کاملEffect of Different Salinity Levels on β-Carotene Production by Dunaliella Sp. Isolates from the Maharlu Lake, Iran
ABSTRACT Background and Objective: Microalgae are a group of algae that produce biochemical products consisting of a wide range of carbohydrates, lipids and proteins that are commercially valuable. Interest in microalgal cultivation is currently blossoming globally. Species of Dunaliella are found in freshwater, euryhaline habitats of all contine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Saline Systems
دوره 5 شماره
صفحات -
تاریخ انتشار 2009