Suppression of type III effector secretion by polymers
نویسندگان
چکیده
Bacteria secrete effector proteins required for successful infection and expression of toxicity into host cells. The type III secretion apparatus is involved in these processes. Previously, we showed that the viscous polymer polyethylene glycol (PEG) 8000 suppressed effector secretion by Pseudomonas aeruginosa. We thus considered that other viscous polymers might also suppress secretion. We initially showed that PEG200 (formed from the same monomer (ethylene glycol) as PEG8000, but which forms solutions of lower viscosity than the latter compound) did not decrease effector secretion. By contrast, alginate, a high-viscous polymer formed from mannuronic and guluronic acid, unlike PEG8000, effectively inhibited secretion. The effectiveness of PEG8000 and alginate in this regard was closely associated with polymer viscosity, but the nature of viscosity dependence differed between the two polymers. Moreover, not only the natural polymer alginate, but also mucin, which protects against infection, suppressed secretion. We thus confirmed that polymer viscosity contributes to the suppression of effector secretion, but other factors (e.g. electrostatic interaction) may also be involved. Moreover, the results suggest that regulation of bacterial secretion by polymers may occur naturally via the action of components of biofilm or mucin layer.
منابع مشابه
ویژگیهای سیستم ترشحی نوع 3 در نمونههای سودوموناس ائروژینوزای جدا شده از بیماران مبتلا به سیستیک فیبروزیس
Abstract Background: Pseudomonas aeruginosalung infection is a major cause of morbidity and mortality in patients with cystic fibrosis (CF). The type III secretion system is an important and identified virulence determinant of P. aeruginosa that delivers effector proteins into targeted host cells. Three effector proteins have been described in P. aeruginosa: exoS, exoT, exoU. Unlike many studie...
متن کاملThe roles of EPIYA sequence to perturb the cellular signaling pathways and cancer risk
Abstract It was shown that several pathogenic bacterial effector proteins contain the Glu-Pro-Ile-Tyr-Ala (EPIYA) or a similar sequence. These bacterial EPIYA effectors are delivered into host cell via type III or IV secretion system, where they undergo tyrosine phosphorylation at the EPIYA sequences, which triggers interaction with multiple host cell SH2 domain-containing proteins and thereby...
متن کاملMolecular Investigation of Outer Membrane Channel Genes Among Multidrug Resistance Clinical Pseudomonas Aeruginosa Isolates
Background: Multidrug resistance Pseudomonas aeruginosa (MDRPA) is most important issue in healthcare setting. It can secrete many virulence effector proteins via its secretion system type (T1SS-T6SS). They are using them as conductor for delivering the effector proteins outside to begins harmful effect on host cell increasing pathogenicity, competition against other microorganism and nutrient ...
متن کاملفراوانی ژنهای کد کننده سیتوتوکسینهای exoT، exoY، exoS وexoU سیستم ترشحی تیپ 3 در سودوموناس آئروجینوزا جدا شده از بیماران سوختگی
Background and Objective: Pseudomonas aeruginosa is an opportunistic pathogen causing nosocomial burn infections. Disease results from the production of numerous virulence factors, some of which are injected directly into the eukaryotic host cells via the type III secretion system (T3SS).The aim of this study was to determine the prevalence of cytotoxins encoding exoT, exoY, exoS and exoU genes...
متن کاملBehind the lines–actions of bacterial type III effector proteins in plant cells
Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which...
متن کامل