High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals.

نویسندگان

  • Hanying Li
  • Benjamin C-K Tee
  • Judy J Cha
  • Yi Cui
  • Jong Won Chung
  • Sang Yoon Lee
  • Zhenan Bao
چکیده

Field-effect transistors based on single crystals of organic semiconductors have the highest reported charge carrier mobility among organic materials, demonstrating great potential of organic semiconductors for electronic applications. However, single-crystal devices are difficult to fabricate. One of the biggest challenges is to prepare dense arrays of single crystals over large-area substrates with controlled alignment. Here, we describe a solution processing method to grow large arrays of aligned C(60) single crystals. Our well-aligned C(60) single-crystal needles and ribbons show electron mobility as high as 11 cm(2)V(-1)s(-1) (average mobility: 5.2 ± 2.1 cm(2)V(-1)s(-1) from needles; 3.0 ± 0.87 cm(2)V(-1)s(-1) from ribbons). This observed mobility is ~8-fold higher than the maximum reported mobility for solution-grown n-channel organic materials (1.5 cm(2)V(-1)s(-1)) and is ~2-fold higher than the highest mobility of any n-channel organic material (~6 cm(2)V(-1)s(-1)). Furthermore, our deposition method is scalable to a 100 mm wafer substrate, with around 50% of the wafer surface covered by aligned crystals. Hence, our method facilitates the fabrication of large amounts of high-quality semiconductor crystals for fundamental studies, and with substantial improvement on the surface coverage of crystals, this method might be suitable for large-area applications based on single crystals of organic semiconductors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Organic field effect transistor using pentacene single crystals grown by a liquid-phase crystallization process.

Nearly perfect pentacene single crystals with wide terraces several micrometers in width were grown by crystallization from a pentacene-containing trichlorobenzene solution. Organic field-effect transistors (OFETs) were fabricated with the pentacene single crystals and characterized for their electrical properties. The field effect mobility was found to be in the range of 0.4-0.6 cm(2)/V x s, w...

متن کامل

Solution-processed n-type fullerene field-effect transistors prepared using CVD-grown graphene electrodes: improving performance with thermal annealing.

Solution-processed organic field effect transistors (OFETs), which are amenable to facile large-area processing methods, have generated significant interest as key elements for use in all-organic electronic applications aimed at realizing low-cost, lightweight, and flexible devices. The low performance levels of n-type solution-processed bottom-contact OFETs unfortunately continue to pose a bar...

متن کامل

Interface optimization using diindenoperylene for C60 thin film transistors with high electron mobility and stability

C60-based organic thin film transistors (OTFTs) with high electron mobility and high operational stability are achieved with (111) oriented C60 films grown by using template effects of diindenoperylene (DIP) under layer on the SiO2 gate insulator. The electron mobility of the C60 transistor is significantly increased from 0.21 cm V 1 s 1 to 2.92 cm V 1 s 1 by inserting the template-DIP layer. M...

متن کامل

High-temperature superconductivity in lattice-expanded C60.

C60 single crystals have been intercalated with CHCl3 and CHBr3 in order to expand the lattice. High densities of electrons and holes have been induced by gate doping in a field-effect transistor geometry. At low temperatures, the material turns superconducting with a maximum transition temperature of 117 K in hole-doped C60/CHBr3. The increasing spacing between the C60 molecules follows the ge...

متن کامل

High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals.

Unlike graphene, the existence of bandgaps (1-2 eV) in the layered semiconductor molybdenum disulphide, combined with mobility enhancement by dielectric engineering, offers an attractive possibility of using single-layer molybdenum disulphide field-effect transistors in low-power switching devices. However, the complicated process of fabricating single-layer molybdenum disulphide with an additi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 134 5  شماره 

صفحات  -

تاریخ انتشار 2012