Effects of acute hypoxia on heart rate variability, sample entropy and cardiorespiratory phase synchronization
نویسندگان
چکیده
BACKGROUND Investigating the responses of autonomic nervous system (ANS) in hypoxia may provide some knowledge about the mechanism of neural control and rhythmic adjustment. The integrated cardiac and respiratory system display complicated dynamics that are affected by intrinsic feedback mechanisms controlling their interaction. To probe how the cardiac and respiratory system adjust their rhythms in different simulated altitudes, we studied heart rate variability (HRV) in frequency domain, the complexity of heartbeat series and cardiorespiratory phase synchronization (CRPS) between heartbeat intervals and respiratory cycles. METHODS In this study, twelve male subjects were exposed to simulated altitude of sea level, 3000 m and 4000 m in a hypobaric chamber. HRV was assessed by power spectral analysis. The complexity of heartbeat series was quantified by sample entropy (SampEn). CRPS was determined by cardiorespiratory synchrogram. RESULTS The power spectral HRV indices at all frequency bands depressed according to the increase of altitude. The SampEn of heartbeat series increased significantly with the altitude (P < 0.01). The duration of CRPS epochs at 3000 m was not significantly different from that at sea level. However, it was significantly longer at 4000 m (P < 0.01). CONCLUSIONS Our results suggest the phenomenon of CRPS exists in normal subjects when they expose to acute hypoxia. Further, the autonomic regulation has a significantly stronger influence on CRPS in acute hypoxia. The changes of CRPS and HRV parameters revealed the different regulatory mechanisms of the cardiac and respiratory system at high altitude.
منابع مشابه
Impact of Hypoxia on Heart Rate Variability Based on Sample Entropy
In this study, changes in heart rate variability (HRV) induced by exposure to hypoxia were evaluate in healthy male. The sample entropy as a non-linear method of HRV analysis was used; it’s a powerful way to analyze biological system. Our aim was to investigate the influence of stepwise hypoxia on HRV using sample entropy, we tested nine healthy yellow males (age=35 ± 5) at 3600m, 4000m, 4400m,...
متن کاملRevised Version Ms ERJ-01581-2009 Carotid body and cardiorespiratory alterations in intermittent hypoxia: the oxidative link
Intermittent hypoxia, a feature of obstructive sleep apnea, potentiates ventilatory hypoxic responses, alters heart rate variability and produces hypertension, partially attributed to an enhance carotid body responsiveness to hypoxia. Since oxidative stress is a potential mediator of both chemosensory and cardiorespiratory alterations, we hypothesized that an antioxidant treatment may prevent t...
متن کاملCardiovascular and ventilatory acclimatization induced by chronic intermittent hypoxia: a role for the carotid body in the pathophysiology of sleep apnea.
Patients with obstructive sleep apnea (OSA) show augmented ventilatory, sympathetic and cardiovascular responses to hypoxia. The facilitatory effect of chronic intermittent hypoxia (CIH) on the hypoxic ventilatory response has been attributed to a potentiation of the carotid body (CB) chemosensory response to hypoxia. However, it is a matter of debate whether the effects induced by CIH on venti...
متن کاملEffects of long-term dharma-chan meditation on cardiorespiratory synchronization and heart rate variability behavior.
Remarkable changes in cardiorespiratory interactions are frequently experienced by Chan meditation practitioners following years of practice. This study compares the results of our study on cardiorespiratory interactions for novice (control group) and experienced (experimental group) Chan meditation practitioners. The effectual co-action between the cardiac and respiratory systems was evaluated...
متن کاملCarotid body and cardiorespiratory alterations in intermittent hypoxia: the oxidative link.
Intermittent hypoxia, a feature of obstructive sleep apnoea, potentiates ventilatory hypoxic responses, alters heart rate variability and produces hypertension, partially owing to an enhanced carotid body responsiveness to hypoxia. Since oxidative stress is a potential mediator of both chemosensory and cardiorespiratory alterations, we hypothesised that an antioxidant treatment may prevent thes...
متن کامل