Kinetic models for biomass pyrolysis

نویسندگان

  • Teresa Martí - Rosselló
  • Jun Li
  • Leo Lue
چکیده

Biomass is a versatile material. It can be directly combusted to produce heat; however, by first subjecting it to a thermal or biological degradation, it can also be converted to products with a higher heating value or to materials with properties superior to those of the raw material [1]. When heated in the absence of oxygen, biomass decomposes into a range of products; including char (solid), tar (liquid) and gas; each with properties that differ from the raw biomass. Pyrolysis is considered to occur in two stages: primary decomposition of biomass and secondary reactions of the products generated in the primary decomposition. In order to maximize tar production, the volatiles released from the primary decomposition should be removed from the reaction zone and condensed before the secondary reactions occur, otherwise the volatiles will react further to form more gas and char. The thermal conversion of biomass is affected by heat and mass transfer, reactor configuration and the operating conditions that define the process environment, but the underlying reaction kinetics are key to describing, optimizing and scaling-up the process. Many studies have been undertaken to understand the kinetics of biomass pyrolysis; however, due to the heterogeneity of biomass and the complexity of the chemical and physical changes that occur during pyrolysis, it is difficult to develop a simple kinetic model that is applicable in every case. As a result, this field is still an active area of research. In this review, different methods to describe biomass pyrolysis and different types of kinetic mechanisms are discussed. Other up to date reviews on the subject with different scopes can be found in the literature [2,3].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of heat transfer in the pyrolysis of differently shaped biomass particles subjected to different boundary conditions: integral transform methods

The conversion and utilization of biomass as an alternative source of energy have been subjects of interest in various countries, but technical barriers to the technology and design of conversion plants have considerably impeded the development and use of alternative power sources. Theoretical studies on the conversion process enhance our understanding of the thermochemical conversion of solid ...

متن کامل

Nonlinear Analysis of Integrated Kinetics and Heat Transfer Models of Slow Pyrolysis of Biomass Particles using Differential Transformation Method

The inherent nonlinearities in the kinetics and heat transfer models of biomass pyrolysis have led to the applications of various numerical methods in solving the nonlinear problems. However, in order to have physical insights into the phenomena and to show the direct relationships between the parameters of the models, analytical solutions are required. In this work, approximate analytical solu...

متن کامل

Pyrolysis of Shrinking Cylindrical Biomass Pellet

In the present study, impact of shrinkage on pyrolysis of biomass particles is studied employing a kinetic model coupled with heat transfer model using a practically significant kinetic scheme consisting of physically measurable parameters. The numerical model is used to examine the impact of shrinkage on temperature profile and pyrolysis conversion time considering cylindrical geometry. Finite...

متن کامل

Optimization of Kinetic Parameters in Pyrolysis of Biomass Using Differential Evolution (DE)

Pyrolysis, a first step in the biomass gasification, is the thermal decomposition of organic matter under inert atmospheric conditions, leading to the release of volatiles and formation of char. In the proposed kinetic model of this study, the kinetic scheme of biomass decomposition by two competing reactions giving gaseous volatiles and solid charcoal is used. Four different models are propose...

متن کامل

Kinetic Modeling for Pyrolysis of Hazelnut Shell: Optimal Parameter Estimation using Differential Evolution (DE)

Pyrolysis is the thermal decomposition of organic matter under inert atmospheric conditions or in the presence of a limited supply of air, leading to the release of volatiles and formation of char. In the proposed kinetic model of this study, the kinetic scheme of biomass decomposition by two competing reactions giving gaseous volatiles and solid charcoal is used. Two different models are propo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016