Physiology of Oil Seeds: IV. Role of Endogenous Ethylene and Inhibitory Regulators during Natural and Induced Afterripening of Dormant Virginia-type Peanut Seeds.
نویسندگان
چکیده
To further elucidate the regulation of dormancy release, we followed the natural afterripening of Virginia-type peanut (Arachis hypogaea L.) seeds from about the 5th to 40th week after harvest. Seeds were kept at low temperature (3 +/- 2 C) until just prior to testing for germination, ethylene production, and internal ethylene concentration. Germination tended to fluctuate but did not increase significantly during the first 30 weeks; internal ethylene concentrations and ethylene production remained comparatively low during this time. When the seeds were placed at room temperature during the 30th to 40th weeks after harvest, there was a large increase in germination, 49% and 47% for apical and basal seeds, respectively. The data confirm our previous suggestion that production rates of 2.0 to 3.0 nanoliters per gram fresh weight per hour are necessary to provide internal ethylene concentrations at activation levels which cause a substantial increase of germination. Activation levels internally must be more than 0.4 microliter per liter and 0.9 microliter per liter for some apical and basal seeds, respectively, since dormant-imbibed seeds containing these concentrations did not germinate. Abscisic acid inhibited germination and ethylene production of afterripened seeds. Kinetin reversed the effects of ABA and this was correlated with its ability to stimulate ethylene production by the seeds. Ethylene also reversed the effects of abscisic acid. Carbon dioxide did not compete with ethylene action in this system. The data indicate that ethylene and an inhibitor, possibly abscisic acid, interact to control dormant peanut seed germination. The inability of CO(2) to inhibit competitively the action of ethylene on dormancy release, as it does other ethylene effects, suggests that the primary site of action of ethylene in peanut seeds is different from the site for other plant responses to ethylene.
منابع مشابه
Assessment Production of Natural Reactive Oxygen Species Affected on Dormancy Alleviation, Germination and Antioxidant System in Sunflower Seeds
BACKGROUND: The active oxygen species, despite the damaging effects they have useful roles in the body are living things. OBJECTIVES: This research was done to determine whether Reactive Oxygen Species (ROS) could mediate Cyanide and Methylviologen signal in seed dormancy alleviation and sunflower seed germination, more widely, to assess their putative ro...
متن کاملSeed dormancy and responses of caryopses, embryos, and calli to abscisic Acid in wheat.
Preharvest sprouting of wheat (Triticum aestivum L.) is associated with inadequate seed dormancy. Although abscisic acid (ABA) has often been suggested to play a central role in developing seed, its involvement in dormancy of mature seed lacks firm experimental evidence and endogenous ABA levels are not well correlated with germinability. We examined genotypic and temporal variation in wheat se...
متن کاملEffect of Reactive Oxygen Species on Germination and Lipid Proxidation in Sunflower Seeds
Reactive oxygen species cause to release of dormancy in many plants such as sunflower seeds. This study investigated in order to evaluation role of reactive oxygen species germination and lipid proxidation in sunflower seeds. This study was performed in two separate experiments, each in a completely randomized design with factorial design with four replications. In both experiments, uses from ...
متن کاملEffects of savory essential oil on germination parameters of Fusarium infected-seeds of wheat (Triticum aestivum L.).
High use of synthetic pesticides has detrimental effects on the environment. An alternative option is application of natural pesticide compounds. The aim of this study was to evaluate the possibility of replacing Vitavax with savory essential oil to inhibit physiological damages to wheat (Triticum aestivum L.) seeds caused by Fusarium oxysprum. A pot experiment was carried out on wheat seeds as...
متن کاملEffect of Reactive Oxygen Species on Germination and Lipid Proxidation in Sunflower Seeds
Reactive oxygen species cause to release of dormancy in many plants such as sunflower seeds. This study investigated in order to evaluation role of reactive oxygen species germination and lipid proxidation in sunflower seeds. This study was performed in two separate experiments, each in a completely randomized design with factorial design with four replications. In both experiments, uses from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 50 3 شماره
صفحات -
تاریخ انتشار 1972