Knockin mice with Leu9'Ser alpha4-nicotinic receptors: substantia nigra dopaminergic neurons are hypersensitive to agonist and lost postnatally.
نویسندگان
چکیده
This study analyzes the electrophysiological cause and behavioral consequence of dopaminergic cell loss in a knockin mouse strain bearing hypersensitive nicotinic alpha4-receptor subunits ("L9'S mice"). Adult brains of L9'S mice show moderate loss of substantia nigra dopaminergic neurons and of striatal dopaminergic innervation. Amphetamine-stimulated locomotion is impaired, reflecting a reduction of dopamine stored in presynaptic vesicles. Recordings from dopaminergic neurons in L9'S mice show that 10 microM nicotine depolarizes cells and increases spiking rates in L9'S cells but hyperpolarizes and decreases spiking rates in wild-type (WT) cells. Thus dopaminergic neurons of L9'S mice have an excitatory response to nicotine which is qualitatively different from that of WT neurons. The cause of dopaminergic cell death is therefore probably an increased sensitivity to acetylcholine or choline of alpha4-containing nicotinic receptors. Hypersensitive excitatory stimulation during activation of alpha4-containing receptors provides the first evidence for cholinergic excitotoxicity as a cause of dopaminergic neuron death. This novel concept may be relevant to the pathophysiology of Parkinson disease.
منابع مشابه
Knock-In Mice with Leu9’Ser 4 Nicotinic Receptors: Substantia Nigra Dopaminergic Neurons are Hypersensitive to Agonist and Lost Postnatally
This study analyzes the electrophysiological cause and behavioral consequence of dopaminergic cell loss in a knock-in mouse strain bearing hypersensitive nicotinic 4 receptor subunits (“L9’S mice”). Adult brains of L9’S mice show moderate loss of substantia nigra dopaminergic neurons and of striatal dopaminergic innervation. Amphetamine-stimulated locomotion is impaired, reflecting a reduction ...
متن کاملPoint mutant mice with hypersensitive alpha 4 nicotinic receptors show dopaminergic deficits and increased anxiety.
Knock-in mice were generated that harbored a leucine-to-serine mutation in the alpha4 nicotinic receptor near the gate in the channel pore. Mice with intact expression of this hypersensitive receptor display dominant neonatal lethality. These mice have a severe deficit of dopaminergic neurons in the substantia nigra, possibly because the hypersensitive receptors are continuously activated by no...
متن کاملMice lacking the alpha4 nicotinic receptor subunit fail to modulate dopaminergic neuronal arbors and possess impaired dopamine transporter function.
Neuronal nicotinic acetylcholine receptors (nAChRs) at presynaptic sites can modulate dopaminergic synaptic transmission by regulating dopamine (DA) release and uptake. Dopaminergic transmission in nigrostriatal and mesolimbic pathways is vital for the coordination of movement and is associated with learning and behavioral reinforcement. We reported recently that the D2 DA receptor plays a cent...
متن کاملActivation of alpha4* nAChRs is necessary and sufficient for varenicline-induced reduction of alcohol consumption.
Recently, the smoking cessation therapeutic varenicline, a nicotinic acetylcholine receptor (nAChR) partial agonist, has been shown to reduce alcohol consumption. However, the mechanism and nAChR subtype(s) involved are unknown. Here we demonstrate that varenicline and alcohol exposure, either alone or in combination, selectively activates dopaminergic (DAergic) neurons within the posterior, bu...
متن کاملEnhanced expression of hypersensitive alpha4* nAChR in adult mice increases the loss of midbrain dopaminergic neurons.
We describe an inducible genetic model for degeneration of midbrain dopaminergic neurons in adults. In previous studies, knock-in mice expressing hypersensitive M2 domain Leu9'Ser (L9'S) alpha4 nicotinic receptors (nAChR) at near-normal levels displayed dominant neonatal lethality and dopaminergic deficits in embryonic midbrain, because the hypersensitive nAChR is excitotoxic. However, heterozy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological genomics
دوره 18 3 شماره
صفحات -
تاریخ انتشار 2004