A probabilistic approach to modelling uncertain logical arguments

نویسنده

  • Anthony Hunter
چکیده

Argumentation can be modelled at an abstract level using a directed graph where each node denotes an argument and each arc denotes an attack by one argument on another. Since arguments are often uncertain, it can be useful to quantify the uncertainty associated with each argument. Recently, there have been proposals to extend abstract argumentation to take this uncertainty into account. This assigns a probability value for each argument that represents the degree to which the argument is believed to hold, and this is then used to generate a probability distribution over the full subgraphs of the argument graph, which in turn can be used to determine the probability that a set of arguments is admissible or an extension. In order to more fully understand uncertainty in argumentation, in this paper, we extend this idea by considering logic-based argumentation with uncertain arguments. This is based on a probability distribution over models of the language, which can then be used to give a probability distribution over arguments that are constructed using classical logic. We show how this formalization of uncertainty of logical arguments relates to uncertainty of abstract arguments, and we consider a number of interesting classes of probability assignments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling Probabilistic Inference Networks and Classification in Probabilistic Datalog

Probabilistic Graphical Models (PGM) are a well-established approach for modelling uncertain knowledge and reasoning. Since we focus on inference, this paper explores Probabilistic Inference Networks (PIN’s) which are a special case of PGM. PIN’s, commonly referred as Bayesian Networks, are used in Information Retrieval to model tasks such as classification and ad-hoc retrieval. Intuitively, a ...

متن کامل

Information Retrieval with Probabilistic Datalog

The probabilistic logical approach in Information Retrieval (IR) aims at describing the retrieval process as the computation of the probability P (d! q) that a document d implies a query q. Probabilistic Datalog (DatalogP ) is a logic that enables uncertain inference. We use DatalogP as a platform for investigating the probabilistic logical approach in IR. The expressiveness of DatalogP allows ...

متن کامل

Correct Grounded Reasoning with Presumptive Arguments

We address the semantics and normative questions for reasoning with presumptive arguments: How are presumptive arguments grounded in interpretations; and when are they evaluated as correct? For deductive and uncertain reasoning, classical logic and probability theory provide canonical answers to these questions. Staying formally close to these, we propose case models and their preferences as fo...

متن کامل

Hybrid Logical Bayesian Networks

Probabilistic logical models have proven to be very successful at modelling uncertain, complex relational data. Most current formalisms and implementations focus on modelling domains that only have discrete variables. Yet many real-world problems are hybrid and have both discrete and continuous variables. In this paper we focus on the Logical Bayesian Network (LBN) formalism. This paper discuss...

متن کامل

Models for Integrated Information Retrieval and Database Systems

In this paper, we show that there is a mismatch between information retrieval (IR) and database (DB) concepts, and we devise solutions for this problem. DB oriented approaches have to distinguish between the logical and the content structure of objects, and should also consider the layout structure. Data independence—not regarded in IR before—can be achieved by using the notion of vague predica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Approx. Reasoning

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2013