Reconstruction of metabolic pathways by combining probabilistic graphical model-based and knowledge-based methods

نویسندگان

  • Qi Qi
  • Jilong Li
  • Jianlin Cheng
چکیده

Automatic reconstruction of metabolic pathways for an organism from genomics and transcriptomics data has been a challenging and important problem in bioinformatics. Traditionally, known reference pathways can be mapped into an organism-specific ones based on its genome annotation and protein homology. However, this simple knowledge-based mapping method might produce incomplete pathways and generally cannot predict unknown new relations and reactions. In contrast, ab initio metabolic network construction methods can predict novel reactions and interactions, but its accuracy tends to be low leading to a lot of false positives. Here we combine existing pathway knowledge and a new ab initio Bayesian probabilistic graphical model together in a novel fashion to improve automatic reconstruction of metabolic networks. Specifically, we built a knowledge database containing known, individual gene / protein interactions and metabolic reactions extracted from existing reference pathways. Known reactions and interactions were then used as constraints for Bayesian network learning methods to predict metabolic pathways. Using individual reactions and interactions extracted from different pathways of many organisms to guide pathway construction is new and improves both the coverage and accuracy of metabolic pathway construction. We applied this probabilistic knowledge-based approach to construct the metabolic networks from yeast gene expression data and compared its results with 62 known metabolic networks in the KEGG database. The experiment showed that the method improved the coverage of metabolic network construction over the traditional reference pathway mapping method and was more accurate than pure ab initio methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring soybean metabolic pathways based on probabilistic graphical model and knowledge-based methods

Soybean (Glycine max) is a major source of vegetable oil and protein for both animal and human consumption. The completion of soybean genome sequence led to a number of transcriptomic studies (RNA-seq), which provide a resource for gene discovery and functional analysis. Several data-driven (e.g., based on gene expression data) and knowledge-based (e.g., predictions of molecular interactions) m...

متن کامل

Rule-based joint fuzzy and probabilistic networks

One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...

متن کامل

Metabolomics-Based Study of Logarithmic and Stationary Phases of Promastigotes in Leishmania major by 1H NMR Spectroscopy

Background: Cutaneous leishmaniasis is one of the most important parasitic diseases in humans. In this disease, one of the responsible organisms is Leishmania major, which is transmitted by sandfly vector. There are specific differences in biochemical profiles and metabolite pathways in logarithmic and stationary phases of Leishmania parasites. In the present study, 1H NMR spectroscopy was used...

متن کامل

Knowledge Combination in Graphical Multiagent Model

A graphical multiagent model (GMM) represents a joint distribution over the behavior of a set of agents. One source of knowledge about agents' behavior may come from gametheoretic analysis, as captured by several graphical game representations developed in recent years. GMMs generalize this approach to express arbitrary distributions, based on game descriptions or other sources of knowledge bea...

متن کامل

Probit-Based Traffic Assignment: A Comparative Study between Link-Based Simulation Algorithm and Path-Based Assignment and Generalization to Random-Coefficient Approach

Probabilistic approach of traffic assignment has been primarily developed to provide a more realistic and flexible theoretical framework to represent traveler’s route choice behavior in a transportation network. The problem of path overlapping in network modelling has been one of the main issues to be tackled. Due to its flexible covariance structure, probit model can adequately address the pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014