Adaptive Hamiltonian and Riemann Manifold Monte Carlo Samplers

نویسندگان

  • Ziyu Wang
  • Shakir Mohamed
  • Nando de Freitas
چکیده

In this paper we address the widelyexperienced difficulty in tuning Monte Carlo sampler based on simulating Hamiltonian dynamics. We develop an algorithm that allows for the adaptation of Hamiltonian and Riemann manifold Hamiltonian Monte Carlo samplers using Bayesian optimization that allows for infinite adaptation of the parameters of these samplers. We show that the resulting samplers are ergodic, and that the use of our adaptive algorithms makes it easy to obtain more efficient samplers, in some cases precluding the need for more complex solutions. Hamiltonian-based Monte Carlo samplers are widely known to be an excellent choice of MCMC method, and we aim with this paper to remove a key obstacle towards the more widespread use of these samplers in practice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Complete Recipe for Stochastic Gradient MCMC

Many recent Markov chain Monte Carlo (MCMC) samplers leverage continuous dynamics to define a transition kernel that efficiently explores a target distribution. In tandem, a focus has been on devising scalable variants that subsample the data and use stochastic gradients in place of full-data gradients in the dynamic simulations. However, such stochastic gradient MCMC samplers have lagged behin...

متن کامل

Riemann manifold Langevin and Hamiltonian Monte Carlo methods

The paper proposes Metropolis adjusted Langevin and Hamiltonian Monte Carlo sampling methods defined on the Riemann manifold to resolve the shortcomings of existing Monte Carlo algorithms when sampling from target densities that may be high dimensional and exhibit strong correlations. The methods provide fully automated adaptation mechanisms that circumvent the costly pilot runs that are requir...

متن کامل

Gradient-based MCMC samplers for dynamic causal modelling

In this technical note, we derive two MCMC (Markov chain Monte Carlo) samplers for dynamic causal models (DCMs). Specifically, we use (a) Hamiltonian MCMC (HMC-E) where sampling is simulated using Hamilton's equation of motion and (b) Langevin Monte Carlo algorithm (LMC-R and LMC-E) that simulates the Langevin diffusion of samples using gradients either on a Euclidean (E) or on a Riemannian (R)...

متن کامل

Riemann Manifold Langevin and Hamiltonian Monte Carlo

This paper proposes Metropolis adjusted Langevin and Hamiltonian Monte Carlo sampling methods defined on the Riemann manifold to resolve the shortcomings of existing Monte Carlo algorithms when sampling from target densities that may be high dimensional and exhibit strong correlations. The methods provide fully automated adaptation mechanisms that circumvent the costly pilot runs required to tu...

متن کامل

Bayesian Adaptive Hamiltonian Monte Carlo with an Application to High-Dimensional BEKK GARCH Models

Hamiltonian Monte Carlo (HMC) is a recent statistical procedure to sample from complex distributions. Distant proposal draws are taken in a sequence of steps following the Hamiltonian dynamics of the underlying parameter space, often yielding superior mixing properties of the resulting Markov chain. However, its performance can deteriorate sharply with the degree of irregularity of the underlyi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013