An autosomal recessive polycystic kidney disease gene homolog is involved in intraflagellar transport in C. elegans ciliated sensory neurons

نویسندگان

  • Hongmin Qin
  • Joel L. Rosenbaum
  • Maureen M. Barr
چکیده

In this report, we show that the Caenorhabditis elegans gene osm-5 is homologous to the Chlamydomonas gene IFT88 and the mouse autosomal recessive polycystic kidney disease (ARPKD) gene, Tg737. The function of this ARPKD gene may be evolutionarily conserved: mutations result in defective ciliogenesis in worms [1], algae [2], and mice [2, 3]. Intraflagellar transport (IFT) is essential for the development and maintenance of motile and sensory cilia [4]. The biochemically isolated IFT particle from Chlamydomonas flagella is composed of 16 polypeptides in one of two Complexes (A and B) [5, 6] whose movement is powered by kinesin II (anterograde) and cytoplasmic dynein (retrograde) [7-9]. We demonstrate that OSM-5 (a Complex B polypeptide), DAF-10 and CHE-11 (two Complex A polypeptides), and CHE-2 [10], a previously uncategorized IFT polypeptide, all move at the same rate in C. elegans sensory cilia. In the absence of osm-5, the C. elegans autosomal dominant PKD (ADPKD) gene products [11] accumulate in stunted cilia, suggesting that abnormal or lack of cilia or defects in IFT may result in diseases such as polycystic kidney disease (PKD).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic Diagnosis of a Lethal Form of Autosomal Recessive Polycystic Kidney Disease

Background Autosomal recessive polycystic kidney disease (ARPKD; OMIM number 263200) is a severe early onset hereditary form of polycystic kidney and liver disease. Case Report In the current study, we present a consanguineous couple with a history of an affected son with polycystic kidney disease (PKD), hepatic failure and epileptic seizures who died at the age of 8 months. Both parents were h...

متن کامل

A latent capacity of the C. elegans polycystins to disrupt sensory transduction is repressed by the single-pass ciliary membrane protein CWP-5.

Autosomal dominant polycystic kidney disease (ADPKD) results from loss-of-function mutations in PKD1 or PKD2. The products of these genes, the polycystins PC-1 and PC-2, form a transmembrane channel that is necessary for flow sensing by renal cilia. In C. elegans, the polycystin orthologs LOV-1 and PKD-2 function in sensory neurons that mediate male mating behavior. Here, we report that the nov...

متن کامل

Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease

Defects in the PKD1 and PKD2 genes cause autosomal dominant polycystic kidney disease (PKD) in ~1 in 1000 adults worldwide. These genes encode polycystin-1 and polycystin-2, which are membrane proteins thought to be involved in a calcium signal transduction cascade that controls epithelial proliferation and differentiation. Individuals with mutations in these genes develop cysts in the ducts an...

متن کامل

Identification of a Novel Intragenic Deletion of the PHKD1 Gene in a Patient with Autosomal Recessive Polycystic Kidney Disease

Background Autosomal recessive polycystic kidney disease (ARPKD) is caused by mutations in the PKHD1gene. In the present study, we describe a severe case of ARPKD carrying a point mutation and a novel four-exon deletion of PKHD1 gene. Materials and Methods The PKHD1, PKD1 and PKD2 ...

متن کامل

Functional characterization of the C. elegans nephrocystins NPHP-1 and NPHP-4 and their role in cilia and male sensory behaviors.

Autosomal dominant polycystic kidney disease (ADPKD) and nephronophthisis (NPH) share two common features: cystic kidneys and ciliary localized gene products. Mutation in either the PKD1 or PKD2 gene accounts for 95% of all ADPKD cases. Mutation in one of four genes (NPHP1-4) results in nephronophthisis. The NPHP1, NPHP2, PKD1, and PKD2 protein products (nephrocystin-1, nephrocystin-2 or invers...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2001