A compact, fast UV photometer for measurement of ozone from research aircraft

نویسندگان

  • R. S. Gao
  • J. Ballard
  • L. A. Watts
  • T. D. Thornberry
  • S. J. Ciciora
  • R. J. McLaughlin
  • D. W. Fahey
چکیده

In situ measurements of atmospheric ozone (O3) are performed routinely from many research aircraft platforms. The most common technique depends on the strong absorption of ultraviolet (UV) light by ozone. As atmospheric science advances to the widespread use of unmanned aircraft systems (UASs), there is an increasing requirement for minimizing instrument space, weight, and power while maintaining instrument accuracy, precision and time response. The design and use of a new, dual-beam, UV photometer instrument for in situ O3 measurements is described. A polarization optical-isolator configuration is utilized to fold the UV beam inside the absorption cells, yielding a 60cm absorption length with a 30-cm cell. The instrument has a fast sampling rate (2 Hz at < 200 hPa, 1 Hz at 200–500 hPa, and 0.5 Hz at ≥ 500 hPa), high accuracy (3 % excluding operation in the 300–450 hPa range, where the accuracy may be degraded to about 5 %), and excellent precision (1.1× 1010 O3 molecules cm−3 at 2 Hz, which corresponds to 3.0 ppb at 200 K and 100 hPa, or 0.41 ppb at 273 K and 1013 hPa). The size (36 l), weight (18 kg), and power (50–200 W) make the instrument suitable for many UASs and other airborne platforms. Inlet and exhaust configurations are also described for ambient sampling in the troposphere and lower stratosphere (1000–50 hPa) that control the sample flow rate to maximize time response while minimizing loss of precision due to induced turbulence in the sample cell. In-flight and laboratory intercomparisons with existing O3 instruments show that measurement accuracy is maintained in flight.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مطالعه پرتوهای فرابنفش انتشار یافته از لامپ‏های فلورسنت فشرده متداول

Background and aims: Compact fluorescent lamps(CFLs) are low-pressure mercury vapor lamps, which are more useful than other light sources. Some studies reported the leakage of UV radiation from CFLs. The aim of this study was measuring of ultraviolet radiation from universal compact fluorescent lamps in Iran. Methods: In this study, measuring of UV radiation of 54 bulb compact fluorescent lamps...

متن کامل

Measurement of solar ultraviolet radiation in Yazd, Iran

Background: Ultraviolet (UV) radiation is divided into three regions: UVA, UVB, and UVC. Both the quality and quantity of solar UV radiation vary with various factors including the elevation of the sun above the horizon, as well as absorption and scattering of UV photons by molecules in the atmosphere, notably ozone and clouds. It is clear that whereas a moderate amount of UV exposure ...

متن کامل

Evaluation of the MOZAIC Capacitive Hygrometer during the airborne field study CIRRUS-III

The MOZAIC Capacitive Hygrometer (MCH) is usually operated aboard passenger aircraft in the framework of MOZAIC (Measurement of Ozone by Airbus In-Service Aircraft) for measuring atmospheric relative humidity (RH). In order to evaluate the performance of the MCH, the instrument was operated aboard a Learjet 35A research aircraft as part of the CIRRUS-III field study together with a closed-cell ...

متن کامل

Direct-Sun column ozone retrieval by the ultraviolet multifilter rotating shadow-band radiometer and comparison with those from Brewer and Dobson spectrophotometers.

A methodology for direct-Sun ozone retrieval using the ultraviolet multifilter rotating shadow-band radiometer (UV-MFRSR) is presented. Total vertical column ozone was retrieved in three stations: Mauna Loa, Hawaii, in the U.S., and Regina, Saskatchewan, and Toronto, Ontario, in Canada, from direct solar irradiances of the UV-MFRSR at 325-, 305-, 332-, and 311-nm channels (2-nm FWHM). The total...

متن کامل

Observation of ozone enhancement in the lower troposphere over East Asia from a space-borne ultraviolet spectrometer

We report observations from space using ultraviolet (UV) radiance for significant enhancement of ozone in the lower troposphere over central and eastern China (CEC). The recent retrieval products of the Ozone Monitoring Instrument (OMI) onboard the Earth Observing System (EOS) Aura satellite revealed the spatial and temporal variation of ozone distributions in multiple layers in the troposphere...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012