Surfaces and interfacial water: evidence that hydrophilic surfaces have long-range impact.

نویسندگان

  • Jian-Ming Zheng
  • Wei-Chun Chin
  • Eugene Khijniak
  • Eugene Khijniak
  • Gerald H Pollack
چکیده

It is generally thought that the impact of surfaces on the contiguous aqueous phase extends to a distance of no more than a few water-molecule layers. Older studies, on the other hand, suggest a more extensive impact. We report here that colloidal and molecular solutes suspended in aqueous solution are profoundly and extensively excluded from the vicinity of various hydrophilic surfaces. The width of the solute-free zone is typically several hundred microns. Such large exclusion zones were observed in the vicinity of many types of surface including artificial and natural hydrogels, biological tissues, hydrophilic polymers, monolayers, and ion-exchange beads, as well as with a variety of solutes. Using microscopic observations, as well as measurements of electrical potential and UV-Vis absorption-spectra, infrared imaging, and NMR imaging, we find that the solute-free zone is a physically distinct and less mobile phase of water that can co-exist indefinitely with the contiguous solute-containing phase. The extensiveness of this modified zone is impressive, and carries broad implication for surface-molecule interactions in many realms, including cellular recognition, biomaterial-surface antifouling, bioseparation technologies, and other areas of biology, physics and chemistry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy dissipation of nanoconfined hydration layer: Long-range hydration on the hydrophilic solid surface

The hydration water layer (HWL), a ubiquitous form of water on the hydrophilic surfaces, exhibits anomalous characteristics different from bulk water and plays an important role in interfacial interactions. Despite extensive studies on the mechanical properties of HWL, one still lacks holistic understanding of its energy dissipation, which is critical to characterization of viscoelastic materia...

متن کامل

Effect of radiant energy on near-surface water.

While recent research on interfacial water has focused mainly on the few interfacial layers adjacent to the solid boundary, century-old studies have extensively shown that macroscopic domains of liquids near interfaces acquire features different from the bulk. Interest in these long-range effects has been rekindled by recent observations showing that colloidal and molecular solutes are excluded...

متن کامل

Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion.

The dynamics and structure of water at hydrophobic and hydrophilic diamond surfaces is examined via non-equilibrium Molecular Dynamics simulations. For hydrophobic surfaces under shearing conditions, the general hydrodynamic boundary condition involves a finite surface slip. The value of the slip length depends sensitively on the surface water interaction strength and the surface roughness; heu...

متن کامل

Effect of high-viscosity interphases on drainage between hydrophilic surfaces.

Drainage of water from the region between an advancing probe tip and a flat sample is reconsidered under the assumption that the tip and sample surfaces are both coated by a thin water "interphase" (of width approximately a few nanometers) whose viscosity is much higher than that of the bulk liquid. A formula derived by solving the Navier-Stokes equations allows one to extract an interphase vis...

متن کامل

Temperature-induced hydrophobic-hydrophilic transition observed by water adsorption.

The properties of nanoconfined and interfacial water in the proximity of hydrophobic surfaces play a pivotal role in a variety of important phenomena such as protein folding. Water inside single-walled carbon nanotubes (SWNTs) can provide an ideal system for investigating such nanoconfined interfacial water on hydrophobic surfaces, provided that the nanotubes can be opened without introducing e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advances in colloid and interface science

دوره 127 1  شماره 

صفحات  -

تاریخ انتشار 2006