The Arabidopsis CHL1 protein plays a major role in high-affinity nitrate uptake.
نویسندگان
چکیده
The CHL1 (NRT1) gene of Arabidopsis encodes a nitrate-inducible nitrate transporter that is thought to be a component of the low-affinity (mechanism II) nitrate-uptake system in plants. A search was performed to find high-affinity (mechanism I) uptake mutants by using chlorate selections on plants containing Tag1 transposable elements. Chlorate-resistant mutants defective in high-affinity nitrate uptake were identified, and one had a Tag1 insertion in chl1, which was responsible for the phenotype. Further analysis showed that chl1 mutants have reduced high-affinity uptake in induced plants and are missing a saturable component of the constitutive, high-affinity uptake system in addition to reduced low-affinity uptake. The contribution of CHL1 to constitutive high-affinity uptake is higher when plants are grown at more acidic pH, conditions that increase the level of CHL1 mRNA. chl1 mutants show reduced membrane depolarization in root epidermal cells in response to low (250 microM) and high (10 mM) concentrations of nitrate. Low levels of nitrate (100 microM) induce a rapid increase in CHL1 mRNA. These results show that CHL1 is an important component of both the high-affinity and the low-affinity nitrate-uptake systems and indicate that CHL1 may be a dual-affinity nitrate transporter.
منابع مشابه
CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake.
Higher plants have both high- and low-affinity nitrate uptake systems. These systems are generally thought to be genetically distinct. Here, we demonstrate that a well-known low-affinity nitrate uptake mutant of Arabidopsis, chl1, is also defective in high-affinity nitrate uptake. Two to 3 hr after nitrate induction, uptake activities of various chl1 mutants at 250 microM nitrate (a high-affini...
متن کاملCloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake.
The Arabidopsis CHL1 (AtNRT1) gene encodes an inducible component of low-affinity nitrate uptake, which necessitates a "two-component" model to account for the constitutive low-affinity uptake observed in physiological studies. Here, we report the cloning and characterization of a CHL1 homolog, AtNRT1:2 (originally named NTL1), with data to indicate that this gene encodes a constitutive compone...
متن کاملThe nitrate transporter AtNRT1.1 (CHL1) functions in stomatal opening and contributes to drought susceptibility in Arabidopsis.
The movement of guard cells in stomatal complexes controls water loss and CO(2) uptake in plants. Examination of the dual-affinity nitrate transporter gene AtNRT1.1 (CHL1) revealed that it is expressed and functions in Arabidopsis guard cells. CHL1 promoter-beta-glucuronidase and CHL1 promoter-green fluorescent protein constructs showed strong expression in guard cells, and immunolocalization e...
متن کاملScientific Correspondence A Reevaluation of the Role of Arabidopsis NRT1.1 in High-Affinity Nitrate Transport
In papers by Wang et al. (1998), Liu et al. (1999), and Liu and Tsay (2003), it was proposed that Arabidopsis thaliana Nitrate Transporter1.1 (AtNRT1.1; CHL1) encodes a dual-affinity nitrate transporter that “plays a major role in high-affinity nitrate uptake.” Here, we evaluate this concept by reexamining the uptake kinetics of Arabidopsis (Arabidopsis thaliana) mutant lines defective in NRT1....
متن کاملA reevaluation of the role of Arabidopsis NRT1.1 in high-affinity nitrate transport.
In papers by Wang et al. (1998), Liu et al. (1999), and Liu and Tsay (2003), it was proposed that Arabidopsis thaliana Nitrate Transporter1.1 (AtNRT1.1; CHL1) encodes a dual-affinity nitrate transporter that “plays a major role in high-affinity nitrate uptake.” Here, we evaluate this concept by reexamining the uptake kinetics of Arabidopsis (Arabidopsis thaliana) mutant lines defective in NRT1....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 25 شماره
صفحات -
تاریخ انتشار 1998