Enhancing nanoparticle electrodynamics with gold nanoplate mirrors.

نویسندگان

  • Zijie Yan
  • Ying Bao
  • Uttam Manna
  • Raman A Shah
  • Norbert F Scherer
چکیده

Mirrors and optical cavities can modify and enhance matter-radiation interactions. Here we report that chemically synthesized Au nanoplates can serve as micrometer-size mirrors that enhance electrodynamic interactions. Because of their plasmonic properties, the Au nanoplates enhance the brightness of scattered light from Ag nanoparticles near the nanoplate surface in dark-field microscopy. More importantly, enhanced optical trapping and optical binding of Ag nanoparticles are demonstrated in interferometric optical traps created from a single laser beam and its reflection from individual Au nanoplates. The enhancement of the interparticle force constant is ≈20-fold more than expected from the increased intensity due to standing wave interference. We show that the additional stability for optical binding arises from the restricted axial thermal motion of the nanoparticles that couples to and reduces the fluctuations in the lateral plane. This new mechanism greatly advances the photonic synthesis of ultrastable nanoparticle arrays and investigation of their properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Conventional One-Step Sodium Thiosulfate Facilitated Gold Nanoparticle Synthesis

Gold-gold sulfide nanoparticles are of interest for drug delivery, biomedical imaging, and photothermal therapy applications due to a facile synthesis method resulting in small particles with high near-infrared (NIR) absorption efficiency. Previous studies suggest that the NIR sensitivity of these nanoparticles was due to hexagonally shaped metal-coated dielectric nanoparticles that consist of ...

متن کامل

Shape-Persistent Replica Synthesis of Gold/Silver Bimetallic Nanoplates Using Tailored Silica Cages.

Shape-persistent replica synthesis of Au/Ag bimetallic nanoplates is invented. Using a tailored silica cage as a template for the synthesis, a successful shape-replication of Au/Ag bimetallic nanoplate is achieved at the cage core having geometry of initial Ag nanoplate. This work can open up the simple fabrication of multicomponent metallic particles, with nanogeometry being defined early at t...

متن کامل

Conductive gold nanoparticle mirrors at liquid/liquid interfaces.

Gold nanoparticle (Au NP) mirrors, which exhibit both high reflectance and electrical conductance, were self-assembled at a [heptane + 1,2-dichloroethane]/water liquid/liquid interface. The highest reflectance, as observed experimentally and confirmed by finite difference time domain calculations, occurred for Au NP films consisting of 60 nm diameter NPs and approximate monolayer surface covera...

متن کامل

Planar gold nanoparticle clusters as microscale mirrors.

Dispersible microscale mirror particles were synthesized by linkage of citrate-coated gold nanoparticles and 3-aminopropylsilyl-modified Ca2Nb3O10 perovskite nanoplates. The mirror particles reflect 14-19% of light in the 500-800 nm wavelength interval with retention of polarization. Due to their directional reflection properties, laser-irradiated micromirror dispersions in solvents exhibit Bro...

متن کامل

Biological Routes to Gold Nanoplates

Much effort has been devoted to the synthesis of gold nanoparticles with different shapes, including the zero-dimensional nanospheres, one dimensional nanorods, and two-dimensional nanoplates. Compared to zero or one dimensional nanostructures, the synthesis of two-dimensional nanostructures in high yield has always been more involved, often requiring complex and timeconsuming steps such as mor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 14 5  شماره 

صفحات  -

تاریخ انتشار 2014