Electronic structures and optical properties of BiOX (X = F, Cl, Br, I) via DFT calculations
نویسنده
چکیده
Based on the density functional theory (DFT), the lattice constants and atomic positions of BiOX (X = F, Cl, Br, I) species have been optimized, and the electronic and optical properties of the relaxed species have been calculated, with Bi 5d states considered or not. Relaxation generally results in the shrinkage in a and the expansion of c. Relaxed BiOCl, BiOBr, and BiOI present indirect band gaps, whereas BiOF exhibits a direct or somewhat indirect band-gap feature corresponding to the relaxation and calculation with the Bi 5d states or not. The bottom of the conduction band is quite flat for relaxed BiOI, and apparently flat in BiOBr, and shows observable flatness in BiOCl as well when considering the Bi 5d states. The top of the valence band is rather even as well for some species. The obtained maximum gaps for relaxed BiOF, BiOCl, BiOBr, and BiOI are 3.34, 2.92, 2.65, and 1.75 eV, respectively. The density peak of X np states in the valence band shifts toward the valence band maximum with the increasing X atomic number. The bandwidths, atomic charges, bond orders, and orbital density have also been investigated along with some optical properties.
منابع مشابه
DFT calculations on the electronic structures of BiOX (X = F, Cl, Br, I) photocatalysts with and without semicore Bi 5d states
The electronic structures of BiOX (X = F, Cl, Br, I) photocatalysts have been calculated with and without Bi 5d states using the experimental lattice parameters, via the plane-wave pseudopotential method based on density functional theory (DFT). BiOF exhibits a direct band gap of 3.22 or 3.12 eV corresponding to the adoption of Bi 5d states or not. The indirect band gaps of BiOCl, BiOBr, and Bi...
متن کاملLead Selenide Nanomaterials: Hydrothermal Synthesis, Characterization, Optical Properties and DFT Calculations
Well-defined crystalline PbSe nanocubes and nanospheres have been synthesized through a simple hydrothermal method by using Pb2+- EDTA and Pb2+- oleylamine complexes at 180°C for different reaction times. Composition and morphology of the samples have been characterized by means of XRD and SEM. Gradual release process of Pb2+ from Pb2+-EDTA and Pb2+-oleylamine complexes can adjust the growth ra...
متن کاملA Density Functional Approach toward Structural Features and Properties of C20 and its Complexes with C2X4, C2X2 (X = H, F, Cl, Br) for Synthesis Application
The complexes between C20 and C2 X4 , C2 X2 (X = H, F, Cl, Br) have been studied theoretically at the B3LYP/6-311G (d,p) level. The calculations include the optimized geometries, the interaction energies, aromaticity and thermodynamic. The interaction energies ranging from -60 to -101 kcal/mol and being ordered as: X = F> Cl > Br. Natural bond orbital (NBO) analysis has been performed on all ge...
متن کاملStructural, Electronic, and Optical Properties of BiOX1−xYx (X, Y = F, Cl, Br, and I) Solid Solutions from DFT Calculations
Six BiOX1-xYx (X, Y = F, Cl, Br, and I) solid solutions have been systematically investigated by density functional theory calculations. BiOCl1-xBrx, BiOBr1-xIx, and BiOCl1-xIx solid solutions have very small bowing parameters; as such, some of their properties increase almost linearly with increasing x. For BiOF1-xYx solid solutions, the bowing parameters are very large and it is extremely dif...
متن کاملNew Method for Synthesis of Zinc Metaborate Zn4B6O13 Crystals via Sol-Gel Process and Investigation of DFT Calculations
In this work facile sol-gel (pechni) method has been successfully established to synthesize Zn4B6O13 nanocrystals which have cubic crystals with lattice parameter: a =7.48 A. The structure and morphology of the obtained material were studied by X-ray diffraction (XRD), Infrared spectra (IR), scanning electron microscopy (SEM) and photoluminescence analysis. The experimental results show a band ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of computational chemistry
دوره 30 12 شماره
صفحات -
تاریخ انتشار 2009