Understanding the elasticity of fibronectin fibrils: unfolding strengths of FN-III and GFP domains measured by single molecule force spectroscopy.
نویسندگان
چکیده
While it is well established that fibronectin (FN) matrix fibrils are elastic, the mechanism of fibril elasticity during extension is still debated. To investigate the molecular origin of FN fibril elasticity, we used single molecule force spectroscopy (SMFS) to determine the unfolding behavior of a recombinant FN-III protein construct that contained eight FN-III domains ((1-8)FN-III) and two green fluorescent protein (GFP) domains. FN-III domains were distinguished from GFP domains by their shorter unfolding lengths. The unfolding strengths of both domains were determined for a wide range of pulling rates (50 to 1,745 nm/s). We found that the mechanical stabilities of FN-III and GFP domains were very similar to each other over the entire range of pulling speeds. FN fibrils containing GFP remain brightly fluorescent, even when stretched, meaning that GFP domains remain largely folded. Since GFP and FN-III have equal unfolding strengths, this suggests that FN-III domains are not extensively unraveled in stretched FN fibrils. Our results thus favor an alternative model, which invokes a conformational change from a compact to an extended conformation, as the basis for FN fibril elasticity.
منابع مشابه
Probing the folded state of fibronectin type III domains in stretched fibrils by measuring buried cysteine accessibility.
Fibronectin (FN) is an extracellular matrix protein that is assembled into fibrils by cells during tissue morphogenesis and wound healing. FN matrix fibrils are highly elastic, but the mechanism of elasticity has been debated: it may be achieved by mechanical unfolding of FN-III domains or by a conformational change of the molecule without domain unfolding. Here, we investigate the folded state...
متن کاملThe mechanical hierarchies of fibronectin observed with single-molecule AFM.
Mechanically induced conformational changes in proteins such as fibronectin are thought to regulate the assembly of the extracellular matrix and underlie its elasticity and extensibility. Fibronectin contains a region of tandem repeats of up to 15 type III domains that play critical roles in cell binding and self-assembly. Here, we use single-molecule force spectroscopy to examine the mechanica...
متن کاملForce-Induced Unfolding of Fibronectin in the Extracellular Matrix of Living Cells
Whether mechanically unfolded fibronectin (Fn) is present within native extracellular matrix fibrils is controversial. Fn extensibility under the influence of cell traction forces has been proposed to originate either from the force-induced lengthening of an initially compact, folded quaternary structure as is found in solution (quaternary structure model, where the dimeric arms of Fn cross eac...
متن کاملاهمیت فیبرونکتین در تکوین، ترمیم و درمان: مقاله مروری
Fibronectin (FN) is one of the essential component of the extra cellular matrix and their important role is as regulator of cellular activities and also fibronectin is an important scaffold for maintaining tissue. Fibronectin conformational changes expose additional binding sites that participate in fibril formation and in conversion of fibrils into a stabilized, insoluble form. In fact fibrone...
متن کاملMyomesin is a molecular spring with adaptable elasticity.
The M-band is a transverse structure in the center of the sarcomere, which is thought to stabilize the thick filament lattice. It was shown recently that the constitutive vertebrate M-band component myomesin can form antiparallel dimers, which might cross-link the neighboring thick filaments. Myomesin consists mainly of immunoglobulin-like (Ig) and fibronectin type III (Fn) domains, while sever...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Matrix biology : journal of the International Society for Matrix Biology
دوره 25 3 شماره
صفحات -
تاریخ انتشار 2006