Effect of nanoparticle clustering on the effective thermal conductivity of concentrated silica colloids.
نویسندگان
چکیده
Recent research on nanofluids has offered particle clustering as a possible mechanism for the abnormal enhancement of the effective thermal conductivity (k) when nanoparticles are dispersed in liquids. This paper was devoted to verify experimentally and theoretically the significance of the effect by altering the cluster structure, size distribution, and thermal conductivity of solid particles in water. Starting with well dispersed SiO2 sols in water as a reference system, we control the aggregation kinetics by adjusting pH. Contrary to previous model predictions, the present experiment showed that clustering did not show any discernable enhancement in the thermal conductivity even at high volume loading. A series of fractal model calculations not only suggested that the conductive benefit due to clustering might be completely compensated by the reduced convective contribution due to particle growth, but also recommended the need for higher thermal conductivity and optimized fractal dimension of particles for maximizing the clustering effect.
منابع مشابه
Sonication Effects on Stability and Thermal Properties of Silica- Paraflu Based Nanofluids
Cooling is one of the most important challenges in industries, especially in the automotive industry. The coolant which is used in engine radiators possesses lower thermal conductivity. To enhance the thermal properties, coolant was dispersed in nano-sized particles and the fluid is called as Nanofluid. In this Study, Silica Nanoparticle was dispersed in Paraflu Engine coolant usin...
متن کاملProducion of Nanoparticle Assemblies by Electro-Spraying and Freeze-Drying of Colloids: A New Method to Resolve Handling Problem of Nanoparticles
To resolve handling problem of nanoparticles, due to their small size, a new methodology of electro-spraying and freeze-drying was developed for colloidal nanoparticles of silica and titania to transform them to solid macro-scale nanoparticle assemblies. The assemblies were then redispersed in an aqueous system to investigate the effect of formulation of original solutions and the process ...
متن کاملInvestigation into the Effects of Nanoparticle Size and Channel Depth on the Thermophysical Properties of Water Nanofluids in the Nanochannel Using Molecular Dynamics Simulation
In this research, an in-house code which uses the molecular dynamics method to study the flow of different nanofluids in the copper nanochannel and computes the thermo-physicals properties has been developed. The flow of nanofluids has been studied from hydro-thermally viewpoint and temperature jump at the wall has been applied. Parametric study to consider the effect of different parametric su...
متن کاملOptical Limiting Properties of Colloids Enhanced by Gold Nanoparticles Based on Nonlinear Refraction for Cw Laser Illumination
In this work, thermo-optical properties of gold nanoparticle colloids are studied using continuous wave (CW) laser irradiation at 532 nm. The nanoparticle colloids are fabricated by 18 ns pulsed laser ablation of pure gold plate in the distilled water. The formation of the nanoparticles has been evidenced by optical absorption spectra and transmission electron microscopy. The nonlinear optical ...
متن کاملEffective interactions in mixtures of silica microspheres and polystyrene nanoparticles.
We investigate the effect of small concentrations of highly charged nanoparticles on the stability of uncharged colloidal microspheres using large-scale simulations. Employing pair potentials that accurately represent mixtures of silica microspheres and polystyrene nanoparticles as studied experimentally, we are able to demonstrate that nanoparticle-induced stabilization can arise from a relati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 81 1 Pt 1 شماره
صفحات -
تاریخ انتشار 2010