[Hydrolysis by carboxylesterase and disposition of prodrug with ester moiety].
نویسنده
چکیده
Prodrug is a useful approach for improving the bioavailability of therapeutic agents through increased passive transport. Carboxylesterases (CESs, EC.3.1.1.1.) that show ubiquitous expression profiles play an important role in the biotransformation of ester-containing prodrugs into their therapeutically active forms in the body. High levels of CESs are found in the liver, small intestine and lungs where prodrugs are firstly hydrolyzed before entering the systemic circulation. Rat intestine single-pass perfusion experiments have shown that CES is involved in the intestinal first-pass hydrolysis. Extensive pulmonary first-pass hydrolysis has been observed in accordance to the substrate specificity of CES1 isozyme. Hydrolysis in the human liver and lungs is mainly catalyzed by hCE1 (a human CES1 family isozyme), whereas that in the small intestine is predominantly mediated by hCE2 (a human CES2 family isozyme). hCE2 preferentially hydrolyzes substrates with a small acyl moiety such as CPT-11, due to conformational steric hindrance in its active site. In contrast, hCE1 is able to hydrolyze a variety of substrates due to spacious and flexible substrate binding region in its active site. In addition, hCE1 has been found to catalyze transesterification. Caco-2 cells mainly expresses CES1 isozyme but not CES2 isozyme. Because of the differences in substrate specificity between CES1 and CES2 enzymes, Caco-2 cell monolayer is not suitable for predicting intestinal absorption of prodrugs. These findings indicate that identification of substrate specificity of CES isozymes and development of an in vitro experimental method are essential to support rational design of prodrug.
منابع مشابه
Nucleoside ester prodrug substrate specificity of liver carboxylesterase.
Carboxylesterases are among the best characterized prodrug-hydrolyzing enzymes involved in the activation of several therapeutic carbamate and ester prodrugs. The broad specificity of these enzymes makes them amenable for designing prodrugs. Porcine liver carboxylesterase 1 specificity for amino acid esters of three nucleoside analogs [floxuridine, gemcitabine, and 2-bromo-5,6-dichloro-1-(beta-...
متن کاملOseltamivir phosphate is an ethyl ester prodrug widely used in the treatment and prevention of both influenzavirus A and B infections. The conversion of oseltamivir to its active metabolite oseltamivir carboxylate is dependent on ester hydrolysis mediated by carboxylesterase
1 Activation of the antiviral prodrug oseltamivir is impaired by two newly identified carboxylesterase 1 variants Hao-Jie Zhu and John S. Markowitz Department of Pharmaceutical and Biomedical Sciences (H.J.Z., J.S.M.), Laboratory of Drug Disposition and Pharmacogenetics (H.J.Z., J.S.M.), Charles P. Darby Children’s Research Institute, Medical University of South Carolina DMD Fast Forward. Publi...
متن کاملActivation of the antiviral prodrug oseltamivir is impaired by two newly identified carboxylesterase 1 variants.
Oseltamivir phosphate is an ethyl ester prodrug widely used in the treatment and prevention of both Influenzavirus A and B infections. The conversion of oseltamivir to its active metabolite oseltamivir carboxylate is dependent on ester hydrolysis mediated by carboxylesterase 1 (CES1). We recently identified two functional CES1 variants p.Gly143Glu and p.Asp260fs in a research subject who displa...
متن کاملEvidence for the involvement of a pulmonary first-pass effect via carboxylesterase in the disposition of a propranolol ester derivative after intravenous administration.
The disposition kinetics of O-butyryl propranolol (butyryl-PL), a model compound containing an ester moiety, after intravenous administration was compared with that of PL in rats and beagle dogs. Rats showed only 30% conversion of butyryl-PL to PL up to 2 h after dosing, whereas dogs showed nearly complete conversion within 10 min after administration. The CL(total) of butyryl-PL in rats was 5....
متن کاملBiotransformation Capacity of Carboxylesterase in Skin and Keratinocytes for the Penta-Ethyl Ester Prodrug of DTPA.
The penta-ethyl ester prodrug of the chelating agent diethylene triamine pentaacetic acid (DTPA), referred to as C2E5, effectively accelerated clearance of americium after transdermal delivery. Carboxylesterases (CESs) play important roles in facilitating C2E5 hydrolysis. However, whether CESs in human skin hydrolyze C2E5 remains unknown. We evaluated the gene and protein expression of CESs in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan
دوره 127 4 شماره
صفحات -
تاریخ انتشار 2007