Mammalian Circadian Period, But Not Phase and Amplitude, Is Robust Against Redox and Metabolic Perturbations
نویسندگان
چکیده
AIMS Circadian rhythms permeate all levels of biology to temporally regulate cell and whole-body physiology, although the cell-autonomous mechanism that confers ∼24-h periodicity is incompletely understood. Reports describing circadian oscillations of over-oxidized peroxiredoxin abundance have suggested that redox signaling plays an important role in the timekeeping mechanism. Here, we tested the functional contribution that redox state and primary metabolism make to mammalian cellular timekeeping. RESULTS We found a circadian rhythm in flux through primary glucose metabolic pathways, indicating rhythmic NAD(P)H production. Using pharmacological and genetic perturbations, however, we found that timekeeping was insensitive to changes in glycolytic flux, whereas oxidative pentose phosphate pathway (PPP) inhibition and other chronic redox stressors primarily affected circadian gene expression amplitude, not periodicity. Finally, acute changes in redox state decreased PER2 protein stability, phase dependently, to alter the subsequent phase of oscillation. INNOVATION Circadian rhythms in primary cellular metabolism and redox state have been proposed to play a role in the cellular timekeeping mechanism. We present experimental data testing that hypothesis. CONCLUSION Circadian flux through primary metabolism is cell autonomous, driving rhythmic NAD(P)+ redox cofactor turnover and maintaining a redox balance that is permissive for circadian gene expression cycles. Redox homeostasis and PPP flux, but not glycolysis, are necessary to maintain clock amplitude, but neither redox nor glucose metabolism determines circadian period. Furthermore, cellular rhythms are sensitive to acute changes in redox balance, at least partly through regulation of PER protein. Redox and metabolic state are, thus, both inputs and outputs, but not state variables, of cellular circadian timekeeping. Antioxid. Redox Signal. 28, 507-520.
منابع مشابه
A Novel Robust Adaptive Trajectory Tracking in Robot Manipulators
In this paper, a novel adaptive sliding mode control for rigid robot manipulators is proposed. In the proposed system, since there may exist explicit unknown parameters and perturbations, a Lyapunov based approach is presented to increase system robustness, even in presence of arbitrarily large (but not infinite) discontinuous perturbations. To control and track the robot, a continuous controll...
متن کاملBrain circadian oscillators and redox regulation in mammals.
SIGNIFICANCE Functional states of organisms vary rhythmically with a period of about a day (i.e., circadian). This endogenous dynamic is shaped by day-night alternations in light and energy. Mammalian circadian rhythms are orchestrated by the hypothalamic suprachiasmatic nucleus (SCN), a brain region specialized for timekeeping. These autonomous ~24-h oscillations are cell-based, requiring tran...
متن کاملHigh Amplitude Phase Resetting in Rev-Erbα/Per1 Double Mutant Mice
Over time, organisms developed various strategies to adapt to their environment. Circadian clocks are thought to have evolved to adjust to the predictable rhythms of the light-dark cycle caused by the rotation of the Earth around its own axis. The rhythms these clocks generate persist even in the absence of environmental cues with a period of about 24 hours. To tick in time, they continuously s...
متن کاملIn-depth Characterization of Firefly Luciferase as a Reporter of Circadian Gene Expression in Mammalian Cells
Firefly luciferase (Fluc) is frequently used to report circadian gene expression rhythms in mammalian cells and tissues. During longitudinal assays it is generally assumed that enzymatic substrates are in saturating excess, such that total bioluminescence is directly proportional to Fluc protein level. To test this assumption, we compared the enzyme kinetics of purified luciferase with its acti...
متن کاملInteraction of Circadian Clock Proteins CRY1 and PER2 Is Modulated by Zinc Binding and Disulfide Bond Formation
Period (PER) proteins are essential components of the mammalian circadian clock. They form complexes with cryptochromes (CRY), which negatively regulate CLOCK/BMAL1-dependent transactivation of clock and clock-controlled genes. To define the roles of mammalian CRY/PER complexes in the circadian clock, we have determined the crystal structure of a complex comprising the photolyase homology regio...
متن کامل