Quasi Score is more efficient than Corrected Score in a polynomial measurement error model

نویسندگان

  • Sergiy Shklyar
  • Hans Schneeweiss
  • Alexander Kukush
چکیده

We consider a polynomial regression model, where the covariate is measured with Gaussian errors. The measurement error variance is supposed to be known. The covariate is normally distributed with known mean and variance. Quasi Score (QS) and Corrected Score (CS) are two consistent estimation methods, where the first makes use of the distribution of the covariate (structural method), while the latter does not (functional method). It may therefore be surmised that the former method is (asymptotically) more efficient than the latter one. This can, indeed, be proved for the regression parameters. We do this by introducing a third, so-called Simple Score (SS), estimator, the efficiency of which turns out to be intermediate between QS and CS. When one includes structural and functional estimators for the variance of the error in the equation, SS is still more efficient than CS. When the mean and variance of the covariate are not known and have to be estimated as well, one can still maintain that QS is more efficient than SS for the regression parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi Score is more efficient than Corrected Score in a general nonlinear measurement error model

We compare two consistent estimators of the parameter vector β of a general exponential family measurement error model with respect to their relative efficiency. The quasi score (QS) estimator uses the distribution of the regressor, the corrected score (CS) estimator does not make use of this distribution and is therefore more robust. However, if the regressor distribution is known, QS is asymp...

متن کامل

The polynomial and the Poisson measurement error models: some further results on quasi score and corrected score estimation

The asymptotic covariance matrices of the corrected score, the quasi score, and the simple score estimators of a polynomial measurement error model have been derived in the literature. Here some alternative formulas are presented, which might lead to an easier computation of these matrices. In particular, new properties of the variables tr and μr that constitute the estimators are derived. In a...

متن کامل

Asymptotic optimality of the quasi-score estimator in a class of linear score estimators

We prove that the quasi-score estimator in a mean-variance model is optimal in the class of (unbiased) linear score estimators, in the sense that the difference of the asymptotic covariance matrices of the linear score and quasi-score estimator is positive semi-definite. We also give conditions under which this difference is zero or under which it is positive definite. This result can be applie...

متن کامل

Detection of Outliers and Influential Observations in Linear Ridge Measurement Error Models with Stochastic Linear Restrictions

The aim of this paper is to propose some diagnostic methods in linear ridge measurement error models with stochastic linear restrictions using the corrected likelihood. Based on the bias-corrected estimation of model parameters, diagnostic measures are developed to identify outlying and influential observations. In addition, we derive the corrected score test statistic for outliers detection ba...

متن کامل

Comparing the efficiency of structural and functional methods in measurement error models

The paper is a survey of recent investigations by the authors and others into the relative efficiencies of structural and functional estimators of the regression parameters in a measurement error model. While structural methods, in particular the quasi-score (QS) method, take advantage of the knowledge of the regressor distribution (if available), functional methods, in particular the corrected...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005