Flank collapse at Mount Wrangell, Alaska, recorded by volcanic mass-flow deposits in the Copper River lowland
نویسندگان
چکیده
An areally extensive volcanic mass-flow deposit of Pleistocene age, known as the Chetaslina volcanic mass-flow deposit, is a prominent and visually striking deposit in the southeastern Copper River lowland of south-central Alaska. The mass-flow deposit consists of a diverse mixture of colorful, variably altered volcanic rocks, lahar deposits, glaciolacustrine diamicton, and till that record a major flank collapse on the southwest flank of Mount Wrangell. The deposit is well exposed near its presumed source, and thick, continuous, stratigraphic exposures have permitted us to study its sedimentary characteristics as a means of better understanding the origin, significance, and evolution of the deposit. Deposits of the Chetaslina volcanic mass flow in the Chetaslina River drainage are primary debris-avalanche deposits and consist of two principal facies types, a near-source block facies and a distal mixed facies. The block facies is composed entirely of block-supported, shattered and fractured blocks with individual blocks up to 40 m in diameter. The mixed facies consists of block-sized particles in a matrix of poorly sorted rock rubble, sand, and silt generated by the comminution of larger blocks. Deposits of the Chetaslina volcanic mass flow exposed along the Copper, Tonsina, and Chitina rivers are debris-flow deposits that evolved from the debris-avalanche component of the flow and from erosion and entrainment of local glacial and glaciolacustrine diamicton in the Copper River lowland. The debris-flow deposits were probably generated through mixing of the distal debris avalanche with the ancestral Copper River, or through breaching of a debris-avalanche dam across the ancestral river. The distribution of facies types and major-element chemistry of clasts in the deposit indicate that its source was an ancestral volcanic edifice, informally known as the Chetaslina vent, on the southwest side of Mount Wrangell. A major sector collapse of the Chetaslina vent initiated the Chetaslina volcanic mass flow forming a debris avalanche of about 4 km3 that subsequently transformed to a debris flow of unknown volume. 1279 Résumé : Un dépôt de mouvement de masse de roches volcaniques, datant du Pléistocène, couvre une grande superficie; ce dépôt, connu sous le nom de dépôt de mouvement de masse de roches volcaniques de Chetaslina, est proéminent et visiblement frappant dans les basses-terres du sud-est de la rivière Copper, du centre-sud de l’Alaska. Le dépôt de mouvement de masse comprend un mélange varié, haut en couleur, de roches volcaniques à altération variable, de dépôts de lahar, de diamicton glacio-lacustre et de till qui rappellent un important effondrement de flanc sur le flanc sud-ouest du mont Wrangell. Le dépôt est bien exposé à proximité de sa source réputée et des affleurements stratigraphiques, continus et épais, nous ont permis d’étudier ses caractéristiques sédimentaires afin de mieux comprendre l’origine, la signification et l’évolution du dépôt. Les dépôts de mouvement de masse de roches volcaniques de Chetaslina, dans le bassin de drainage de la rivière Chetaslina, sont surtout des dépôts primaires d’avalanches de débris et comprennent deux principaux types de faciès, un faciès de blocs, à proximité de la source, et un faciès distal mixte. Le faciès de blocs est composé entièrement de blocs fracturés et éclatés soutenus par d’autres blocs; certains blocs atteignant 40 m de diamètre. Le faciès mixte comprend des particules de la dimension de blocs dans une matrice mal triée de débris rocheux, de sable et de silt provenant de la comminution de blocs plus gros. Les dépôts de mouvement de masse de roches volcaniques affleurant le long des rivières Copper, Tonsina et Chitina sont des dépôts de mouvement de masse de débris qui ont évolué à partir de la composante d’avalanche de débris du mouvement de masse et à partir également de l’érosion et de l’entraînement de diamictons glaciaux et glacio-lacustres locaux dans les basses-terres de la rivière Copper. Les dépôts de mouvement débris proviennent probablement du mélange d’une avalanche de débris distale et de la rivière ancestrale Copper ou par la rupture d’un barrage formé par une avalanche de débris en travers de la rivière ancestrale. La distribution des types de faciès et la chimie des éléments majeurs des clastes dans le dépôt indiquent que la source était un ancien édifice volcanique connu de façon informelle sous le nom de cheminée de Chetaslina, sur le côté sud-ouest du mont Wrangell. Un effondrement majeur du secteur de la cheminée de Chetaslina a provoqué le Can. J. Earth Sci. 39: 1257–1279 (2002) DOI: 10.1139/E02-032 © 2002 NRC Canada 1257 Received 19 November 2001. Accepted 8 May 2002. Published on the NRC Research Press Web site at http://cjes.nrc.ca on 26 August, 2002. Paper handled by Associate Editor M. Church. C.F. Waythomas.1 U.S. Geological Survey, Alaska Volcano Observatory, 4230 University Drive, Suite 201, Anchorage, AK 99508, U.S.A. K.L. Wallace. Department of Geology, Northern Arizona University, Flagstaff, AZ 86011, U.S.A. 1Corresponding author (e-mail: [email protected]).
منابع مشابه
Discrimination of hot versus cold avalanche deposits: Implications for hazard assessment at Mount Meager, B.C
The surficial deposits surrounding the Mount Meager volcanic complex include numerous avalanche deposits. These deposits share many attributes: (a) they are nearly monolithologic and comprise mainly intermediate volcanic rock clasts, (b) they lack internal structure, and (c) they are very poorly sorted. Despite these similarities, the avalanche deposits represent two distinct processes. Mass wa...
متن کاملPacific Basin tsunami hazards associated with mass flows in the Aleutian arc of Alaska
We analyze mass-flow tsunami generation for selected areas within the Aleutian arc of Alaska using results from numerical simulation of hypothetical but plausible mass-flow sources such as submarine landslides and volcanic debris avalanches. The Aleutian arc consists of a chain of volcanic mountains, volcanic islands, and submarine canyons, surrounded by a low-relief continental shelf above abo...
متن کاملThe 6 August 2010 Mount Meager rock slide-debris flow, Coast Mountains, British Columbia: characteristics, dynamics, and implications for hazard and risk assessment
A large rock avalanche occurred at 03:27:30 PDT, 6 August 2010, in the Mount Meager Volcanic Complex southwest British Columbia. The landslide initiated as a rock slide in Pleistocene rhyodacitic volcanic rock with the collapse of the secondary peak of Mount Meager. The detached rock mass impacted the volcano’s weathered and saturated flanks, creating a visible seismic signature on nearby seism...
متن کاملVolcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier, Washington
Figure 1. Extent of widespread Osceola Mudflow and Electron mudflow deposits from Mount Rainier. These deposits contain hydrothermally derived clay minerals and likely originated from flank collapses. Modified from Scott and Vallance (1995) and Vallance and Scott (1997). ABSTRACT Catastrophic collapses of steep volcano flanks threaten many populated regions, and understanding factors that promo...
متن کاملThe cohesive Naranjo debris-£ow deposit (10 km3): A dam breakout £ow derived from the Pleistocene debris-avalanche deposit of Nevado de Colima Volcano (Me¤xico)
Mass movement processes on volcanic terrains such as landslides and debris avalanches can cause the obstruction of main drainages producing the formation of temporary dams. A good example of this occurred 18.5 ka ago when the eastern flank of the Nevado de Colima Volcano collapsed producing a debris-avalanche deposit that was previously described as one of the largest in the world. The deposit ...
متن کامل