Knowledge Extraction from Support Vector Machines: A Fuzzy Logic Approach

نویسندگان

  • Shahaf Duenyas
  • Michael Margaliot
چکیده

Support vector machines (SVMs) proved to be highly efficient computational tools in various classification tasks. However, SVMs are nonlinear classifiers and the knowledge learned by an SVM is encoded in a long list of parameter values, making it difficult to comprehend what the SVM is actually computing. We show that certain types of SVMs are mathematically equivalent to a specific fuzzy–rule base, called the fuzzy all–permutations rule base (FARB). The equivalent FARB provides a symbolic representation of the SVM functioning. This leads to a new approach for knowledge extraction from SVMs. An important advantage of this approach is that the number of extracted fuzzy rules depends on the number of support vectors in the SVM. Several simple examples demonstrate the effectiveness of this approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knowledge Extraction From a Class of Support Vector Machines: A Fuzzy Logic Approach

Support vector machines (SVMs) proved to be highly efficient computational tools in various classification tasks. However, the knowledge learned by an SVM is encoded in a long list of parameter values, and it is not easy to comprehend what the SVM is actually computing. We show that certain types of SVMs are mathematically equivalent to a specific fuzzy–rule base, the fuzzy all–permutations rul...

متن کامل

A QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES

Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only  considers both accuracy and generalization criteria in a single objective fu...

متن کامل

A Technical Review on Statistical Feature Extraction of ECG signal

ECG Feature Extraction plays a significant role in diagnosing most of the cardiac diseases. In this paper a comprehensive review has been made for statistical feature extraction of ECG signal analyzing classifying method which have been proposed during the last decade and under evaluation that includes digital signal analysis, Fuzzy Logic methods, Artificial Neural Network, Hidden Markov Model,...

متن کامل

Fuzzy ILP Classification of web reports after linguistic text mining

In this paper we study the problem of classification of textual web reports. We are specifically focused on situations in which structured information extracted from the reports is used for classification. We present an experimental classification system based on usage of third party linguistic analyzers, our previous work on web information extraction, and fuzzy inductive logic programming (fu...

متن کامل

Extraction of fuzzy rules from support vector machines

The relationship between support vector machines (SVMs) and Takagi–Sugeno–Kang (TSK) fuzzy systems is shown. An exact representation of SVMs as TSK fuzzy systems is given for every used kernel function. Restricted methods to extract rules from SVMs have been previously published. Their limitations are surpassed with the presented extraction method. The behavior of SVMs is explained by means of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015