Real-Time Maneuvering Decisions for Autonomous Air Combat
نویسندگان
چکیده
Unmanned Aircraft Systems (UAS) have the potential to perform many of the complex and possibly dangerous missions currently flown by manned aircraft. Within visual range air combat is an extremely difficult and dynamic aerial task which presents many challenges for an autonomous UAS. An agile, unpredictable, and possibly human-piloted adversary, coupled with a complex and rapidly changing environment, creates a problem that is difficult to model and solve. This thesis presents a method for formulating and solving a function approximation dynamic program to provide maneuvering decisions for autonomous one-on-one air combat. Value iteration techniques are used to compute a function approximation representing the solution to the dynamic program. The function approximation is then used as a maneuvering policy for UAS autonomous air combat. The result is an algorithm capable of learning a maneuvering policy and utilizing this policy to make air combat decisions in real-time. Simulation results are presented which demonstrate the robustness of the method against an opponent beginning from both offensive and defensive situations. The results also demonstrate the ability of the algorithm to learn to exploit an opponent’s maneuvering strategy. Flight results are presented from implementation on micro-UAS flown at MIT’s Real-time indoor Autonomous Vehicle test ENvironment (RAVEN) demonstrating the practical application of the proposed solution in real-time flight with actual aircraft. Thesis Supervisor: Jonathan How Title: Professor
منابع مشابه
Fuzzy Model of Human’s Performance for Guarding a Territory in an Air Combat
This paper proposes a new method for a three dimensional fuzzy model of pilot's performance for guarding a territory with a short-distance between two aircraft in an air combat task with a gun. A third-order nonlinear point mass vehicle model is considered for an aircraft's flight dynamics. The desired value of the velocity, the flight path and the heading angles are obtained from some derived ...
متن کاملOptimal pilot decisions and flight trajectories in air combat
The thesis concerns the analysis and synthesis of pilot decision-making and the design of optimal flight trajectories. In the synthesis framework, the methodology of influence diagrams is applied for modeling and simulating the maneuvering decision process of the pilot in one-on-one air combat. The influence diagram representations describing the maneuvering decision in a one sided optimization...
متن کاملAir-Combat Strategy Using Approximate Dynamic Programming
Unmanned Aircraft Systems (UAS) have the potential to perform many of the dangerous missions currently flown by manned aircraft. Yet, the complexity of some tasks, such as air combat, have precluded UAS from successfully carrying out these missions autonomously. This paper presents a formulation of the one-on-one air combat maneuvering problem and an approximate dynamic programming approach to ...
متن کاملTitle : Optimal pilot decisions and flight trajectories in air
The thesis concerns the analysis and synthesis of pilot decisionmaking and the design of optimal flight trajectories. In the synthesis framework, the methodology of influence diagrams is applied for modeling and simulating the maneuvering decision process of the pilot in one-on-one air combat. The influence diagram representations describing the maneuvering decision in a one sided optimization ...
متن کاملModeling Air Combat by a Moving Horizon Influence Diagram Game
The paper describes a multistage influence diagram game for modeling the maneuvering decisions of pilots in one-on-one air combat. It graphically describes the elements of the decision process, contains a model for the dynamics of the aircraft, and takes into account the pilots’ preferences under conditions of uncertainty. The pilots’ game optimal control sequences with respect to their prefere...
متن کامل