Integrable Systems in the Infinite Genus Limit
نویسنده
چکیده
We provide an elementary approach to integrable systems associated with hyperelliptic curves of infinite genus. In particular, we explore the extent to which the classical Burchnall-Chaundy theory generalizes in the infinite genus limit, and systematically study the effect of Darboux transformations for the KdV hierarchy on such infinite genus curves. Our approach applies to complex-valued periodic solutions of the KdV hierarchy and naturally identifies the Riemann surface familiar from standard Floquet theoretic considerations with a limit of Burchnall-Chaundy curves.
منابع مشابه
ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS
The main purpose of this paper is to establish different types of convergence theorems for fuzzy Henstock integrable functions, introduced by Wu and Gong cite{wu:hiff}. In fact, we have proved fuzzy uniform convergence theorem, convergence theorem for fuzzy uniform Henstock integrable functions and fuzzy monotone convergence theorem. Finally, a necessary and sufficient condition under which th...
متن کاملRelationships between Darboux Integrability and Limit Cycles for a Class of Able Equations
We consider the class of polynomial differential equation x&= , 2(,)(,)(,)nnmnmPxyPxyPxy++++2(,)(,)(,)nnmnmyQxyQxyQxy++&=++. For where and are homogeneous polynomials of degree i. Inside this class of polynomial differential equation we consider a subclass of Darboux integrable systems. Moreover, under additional conditions we proved such Darboux integrable systems can have at most 1 limit cycle.
متن کاملNew explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method
To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...
متن کاملHitchin Systems at Low Genera
The paper gives a quick account of the simplest cases of the Hitchin integrable systems and of the Knizhnik-Zamolodchikov-Bernard connection at genus 0, 1 and 2. In particular, we construct the action-angle variables of the genus 2 Hitchin system with group SL2 by exploiting its relation to the classical Neumann integrable systems. 1 Hitchin systems As was realized by Hitchin in [16], a large f...
متن کامل