Stresses in mandibular cortical bone during mastication: biomechanical considerations using a three-dimensional finite element method.

نویسندگان

  • Masayuki Hirabayashi
  • Mitsuru Motoyoshi
  • Toko Ishimaru
  • Kazutaka Kasai
  • Shinkichi Namura
چکیده

This study investigated biomechanical aspects of the action of the biting force during mastication upon the mandibular bone in the lower first molar area. A three-dimensional (3D) finite element model (FEM) consisting of the tooth, periodontal ligament (PDL), alveolar bone, and cortical bone corresponding to the lower first molar area based on computed tomogram (CT) images was constructed. The model was then analyzed while applying a biting force during mastication, which was transmitted from the tooth to the cortical bone, through the PDL and cancellous bone. A compressive stress of 0.3-7.9 MPa acted on the cortical bone during mastication. In the model, the stress in the cortical bone was distributed from the linguo-superior margin to the basal area, and was also observed in the bucco-medial area. These areas completely agreed with the areas that were significantly thicker in the morphological study described by Masumoto et al. (10). It is suggested that there may be a relationship between masticatory force and cortical bone hypertrophy. Further study of the effects of various factors is required.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Abutment Height Difference on Stress Distribution in Mandibular Overdentures: A Three-Dimensional Finite Element Analysis

Background and Aim: Implant-supported overdentures are a treatment option for edentulous patients. One of the important factors in determining the prognosis of overdenture treatment is to control the distribution of stress in the implant-bone and attachment complex. This study assessed the effect of implant abutment height difference on stress distribution in mandibular overdentures. Materials...

متن کامل

Bone Remodeling Response During Mastication on Free-End Removable Prosthesis – a 3D Finite Element Analysis

An understanding of functional responses in oral bone is a crucial component of dental biomechanics. The purpose of this study was to investigate the use of an osseointegrated implant as support for a free-end removable partial denture (RPD) on the potential biological remodelling response during mastication. A three-dimensional (3D) finite element analysis (FEA) was performed to determine the ...

متن کامل

Evaluating the impact of length and thread pitch on the stress distribution in dental implants and surrounding bone using finite element method

 longevity of osseointegrated implants are intensely influenced by biomechanical factors. Control of these factors prevents mechanical complications, which include fracture of screws, components, or materials veneering the framework. In this study, the impact of length and threads pitch of dental implants on the stress distribution and maximum Von Mises stress in implant-abutment complex and ja...

متن کامل

Biomechanical Response in Mandibular Bone due to Mastication Loading on 3-Unit Fixed Partial Dentures

An understanding of functional responses in oral bone is a crucial component of dental biomechanics. The purpose of this study was to investigate the potential biological remodelling response during mastication on the mandibular pre- and post-insertion of a fixed partial denture (FPD). A series of three-dimensional (3D) finite element analysis (FEA) models were presented pre- and postextraction...

متن کامل

Effect of Abutment Angulation and Material on Stress and Strain Distributions in Premaxillary Bone: A Three-Dimensional Finite Element Analysis

Background and Aim: Dental implants with angled abutments are often inserted in the anterior maxillary region due to the status of the residual ridge and aesthetic considerations. The purpose of this study was to assess stress and strain distributions in the premaxillary bone around dental implants by means of finite element analysis (FEA). Materials and Methods: Four three-dimensional (3D) fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of oral science

دوره 44 1  شماره 

صفحات  -

تاریخ انتشار 2002