Monotone separations for constant degree polynomials

نویسندگان

  • Pavel Hrubes
  • Amir Yehudayoff
چکیده

We prove a separation between monotone and general arithmetic formulas for polynomials of constant degree. We give an example of a polynomial C in n variables and degree k which is computable by a homogeneous arithmetic formula of size O(k2n2), but every monotone formula computing C requires size (n/kc)Ω(log k), with c ∈ (0, 1). Since the upper bound is achieved by a homogeneous arithmetic formula, we also obtain a separation between monotone and homogeneous formulas, for polynomials of constant degree.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monotone separations for constant degree

We prove a separation between monotone and general arithmetic formulas for polynomials of constant degree. We give an example of a polynomial C in n variables and degree k which is computable by an arithmetic formula of size O(k2n2), but every monotone formula computing C requires size (n/kc)Ω(log k), with c ∈ (0, 1). This also gives a separation between monotone and homogeneous formulas, for p...

متن کامل

On 3-monotone approximation by piecewise polynomials

Abstract. We consider 3-monotone approximation by piecewise polynomials with prescribed knots. A general theorem is proved, which reduces the problem of 3-monotone uniform approximation of a 3-monotone function, to convex local L1 approximation of the derivative of the function. As the corollary we obtain Jackson-type estimates on the degree of 3-monotone approximation by piecewise polynomials ...

متن کامل

Pointwise estimates for 3-monotone approximation

We prove that for a 3-monotone function F ∈ C[−1, 1], one can achieve the pointwise estimates |F(x) − Ψ(x)| ≤ cω3(F, ρn(x)), x ∈ [−1, 1], where ρn(x) := 1 n2 + √ 1−x2 n and c is an absolute constant, both with Ψ , a 3-monotone quadratic spline on the nth Chebyshev partition, and with Ψ , a 3-monotone polynomial of degree ≤ n. The basis for the construction of these splines and polynomials is th...

متن کامل

MARKOV-NIKOLSKII TYPE INEQUALITY FOR ABSOLUTELY MONOTONE POLYNOMIALS OF ORDER k

A function Q is called absolutely monotone of order k on an interval I if Q(x) ≥ 0, Q(x) ≥ 0, . . . , Q(k)(x) ≥ 0, for all x ∈ I. An essentially sharp (up to a multiplicative absolute constant) Markov inequality for absolutely monotone polynomials of order k in Lp[−1, 1], p > 0, is established. One may guess that the right Markov factor is cn2/k and, indeed, this turns out to be the case. Moreo...

متن کامل

Error estimates to smooth solutions of semi-discrete discontinuous Galerkin methods with quadrature rules for scalar conservation laws

In this paper, we focus on error estimates to smooth solutions of semi-discrete discontinuous Galerkin (DG) methods with quadrature rules for scalar conservation laws. The main techniques we use are energy estimate and Taylor expansion first introduced by Zhang and Shu in [24]. We show that, with P k (piecewise polynomials of degree k) finite elements in 1D problems, if the quadrature over elem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Process. Lett.

دوره 110  شماره 

صفحات  -

تاریخ انتشار 2009