Comparative Analysis of AGPase Genes and Encoded Proteins in Eight Monocots and Three Dicots with Emphasis on Wheat
نویسندگان
چکیده
ADP-glucose pyrophosphorylase (AGPase) is a heterotetrameric enzyme with two large subunits (LS) and two small subunits (SS). It plays a critical role in starch biosynthesis. We are reporting here detailed structure, function and evolution of the genes encoding the LS and the SS among monocots and dicots. "True" orthologs of maize Sh2 (AGPase LS) and Bt2 (AGPase SS) were identified in seven other monocots and three dicots; structure of the enzyme at protein level was also studied. Novel findings of the current study include the following: (i) at the DNA level, the genes controlling the SS are more conserved than those controlling the LS; the variation in both is mainly due to intron number, intron length and intron phase distribution; (ii) at protein level, the SS genes are more conserved relative to those for LS; (iii) "QTCL" motif present in SS showed evolutionary differences in AGPase belonging to wheat 7BS, T. urartu, rice and sorghum, while "LGGG" motif in LS was present in all species except T. urartu and chickpea; SS provides thermostability to AGPase, while LS is involved in regulation of AGPase activity; (iv) heterotetrameric structure of AGPase was predicted and analyzed in real time environment through molecular dynamics simulation for all the species; (v) several cis-acting regulatory elements were identified in the AGPase promoters with their possible role in regulating spatial and temporal expression (endosperm and leaf tissue) and also the expression, in response to abiotic stresses; and (vi) expression analysis revealed downregulation of both subunits under conditions of heat and drought stress. The results of the present study have allowed better understanding of structure and evolution of the genes and the encoded proteins and provided clues for exploitation of variability in these genes for engineering thermostable AGPase.
منابع مشابه
In vitro Expression Studies of Three Proteins of Iranian Wheat Stripe Virus
The genome of Iranian wheat stripe virus (IWSV), a tentative member of the genus Tenuivirus, is comprised of three ambisense and one negative sense RNA segments. The coat and non-structural proteins encoded by the vcRNA3 and vRNA4 genes, respectively, were efficiently translated in vitro. Translated proteins of vcRNA3 and vRNA4 transcripts were approximately 35000 and 22000 in Mr, respectively,...
متن کاملA Study to Assess the Role of Gluten Encoded Genes and Their Regulatory Elements in Bread Making Quality of Wheat
Introduction: Bread making quality is affected by gluten genes and balance between their expressions. Hence, it is necessary for a comprehensive research to study and compare all gluten genes and their regulating elements simultaneously. Objectives: The aim of this study was to evaluate the molecular mechanism of bread quality in the level of coding genes and regulating elements via compa...
متن کاملNovel Structural and Functional Motifs in cellulose synthase (CesA) Genes of Bread Wheat (Triticum aestivum, L.)
Cellulose is the primary determinant of mechanical strength in plant tissues. Late-season lodging is inversely related to the amount of cellulose in a unit length of the stem. Wheat is the most widely grown of all the crops globally, yet information on its CesA gene family is limited. We have identified 22 CesA genes from bread wheat, which include homoeologs from each of the three genomes, and...
متن کاملبررسی روابط فیلوژنتیکی ژنهای واکسی در گندمهای وحشی و زراعی با استفاده از PCR چندگانه
Waxy proteins are responsible for amylase synthesis in wheat seeds, being encoded by three waxy genes (Wx-A1, Wx-B1 and Wx-D1) in hexaploid wheat which have an important role in starch quality. The purpose of this study was to investigate phylogenetic relationship between waxy genes in wild and cultivated wheat using Multiplex-PCR. To this end, 71 populations from 8 Aegilops and 4 wheat wild sp...
متن کاملComparative analysis of ABCB1 reveals novel structural and functional conservation between monocots and dicots
Phytohormone auxin plays a critical role in modulating plant architecture by creating a gradient regulated via its transporters such as ATP-binding cassette (ABC) B1. Except for Arabidopsis and maize, where it was shown to interrupt auxin transport, ABCB1's presence, structure and function in crop species is not known. Here we describe the structural and putative functional organization of ABCB...
متن کامل