Physiology of electrosensory lateral line lobe neurons in Gnathonemus petersii.

نویسندگان

  • Y Sugawara
  • K Grant
  • V Han
  • C C Bell
چکیده

In mormyrid electric fish, sensory signals from electroreceptors are relayed to secondary sensory neurons in a cerebellum-like structure known as the electrosensory lateral line lobe (ELL). Efferent neurons and interneurons of the ELL also receive inputs of central origin, including electric organ corollary discharge signals, via parallel fibers and via fibers from the juxtalobar nucleus. To understand the cellular mechanisms of the integration of sensory inputs and central inputs in the ELL, the intracellular activity and ionic properties of the efferent projection neurons and interneurons were examined in an in vitro slice preparation.We focus here on the electrophysiological properties of the efferent neurons of the ELL network, the large fusiform cells and large ganglion cells, and on a class of gamma-aminobutyric acid (GABA)-ergic interneurons known as medium ganglion (MG) cells. In response to current injection through a recording pipette, both types of efferent neuron fire a large narrow spike followed by a large hyperpolarizing afterpotential. The MG cells fire a complex spike which consists of small narrow spikes and a large broad spike. Although the forms of the action potentials in efferent neurons and in MG cells are different, all spikes are mediated by tetrodotoxin (TTX)-sensitive Na+ conductances and spike repolarization is mediated by tetraethylammonium (TEA+)-sensitive K+ conductances. In the presence of TEA+, substitution of Ba2+ for Ca2+ in the bath revealed the presence of a high-voltage-activated Ca2+ conductance. Stimulation of parallel fibers conveying descending input to the ELL molecular layer in vitro evokes an excitatory postsynaptic potential (EPSP), generally followed by an inhibitory postsynaptic potential (IPSP), in the efferent neurons. In MG cells, the same stimulation evokes an EPSP, often followed by a small IPSP. Synaptic transmission at parallel fiber synapses is glutamatergic and is mediated via both N-methyl-d-aspartate (NMDA)- and (AMPA)-type glutamate receptors. The inhibitory component of the parallel fiber response is GABAergic. It is probably mediated via the stellate neurons and the MG cells, which are themselves GABAergic interneurons intrinsic to the ELL network.A hypothetical neural circuit of the intrinsic connections of the ELL, based on the known morphology of projection neurons and medium ganglion interneurons, is presented. This circuit includes an excitatory and an inhibitory submodule. The excitatory submodule is centered on a large fusiform cell and appears to relay the sensory input as a positive 'ON' image of an object. The inhibitory submodule is centered on a large ganglion cell and relays a negative 'OFF' image to the next higher level. We suggest that MG cells exert an inhibitory bias on efferent neuron types and that the ELL network output is modulated by the dynamically plastic integration of central descending signals with sensory input.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative anatomy of the electrosensory lateral line lobe of mormyrids: the mystery of the missing map in the genus Stomatorhinus (family: Mormyridae).

Fish in the family Mormyridae produce weak electric organ discharges that are used in orientation and communication. The peripheral and central anatomy of the electrosensory system has been well studied in the species Gnathonemus petersii, but comparative studies in other species are scarce. Here we report on one genus of mormyrid that displays a remarkable change in the electrosensory lateral ...

متن کامل

A direct cerebello-telencephalic projection in an electrosensory mormyrid fish.

After injections of the posterior part of the lateral zone of the area dorsalis telencephalic (Dlp) with either horseradish peroxidase or the newly available carbocyanine dye DiI, efferent cells were labeled in the valvula cerebelli of the mormyrid fish, Gnathonemus petersii. This may be a unique connection for this group of electrosensory teleosts, since no other vertebrate has ever been repor...

متن کامل

High substance P-like immunoreactivity (SPLI) in the olfactory and electrosensory cells of gymnotid fish.

Substance P has been proposed as a candidate neurotransmitter or neuromodulator in the nociceptive system. Using a light microscopial immunohistochemical peroxidase-anti-peroxidase technique we have detected high substance P-like immunoreactivity (SPLI) in several types of sensory organs of 4 species of gymnotiform teleost fish: olfactory epithelium, vestibular, lateral line and electrosensory ...

متن کامل

Electrosensory capture during multisensory discrimination of nearby objects in the weakly electric fish Gnathonemus petersii

Animal multisensory systems are able to cope with discrepancies in information provided by individual senses by integrating information using a weighted average of the sensory inputs. Such sensory weighting often leads to a dominance of a certain sense during particular tasks and conditions, also called sensory capture. Here we investigated the interaction of vision and active electrolocation d...

متن کامل

Descending Control of Electroreception. I. Properties Praeeminentialis Neurons Projecting Indirectly to the Electrosensory Lateral Line Lobe

The first-order CNS processing region within the electrosensory system, the electrosensory lateral line lobe, receives massive descending inputs from the nucleus praeeminentialis as well as the primary afferent projection. The n. praeeminentialis receives its input from the electrosensory lateral line lobe as well as from higher centers; hence this nucleus occupies an important position in a fe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 202 Pt 10  شماره 

صفحات  -

تاریخ انتشار 1999