Nonlinear system identification with recurrent neural networks and dead-zone Kalman filter algorithm
نویسندگان
چکیده
Compared to normal learning algorithms, for example backpropagation, Kalman filter-based algorithm has some better properties, such as faster convergence, although this algorithm is more complex and sensitive to the nature of noises. In this paper, extended Kalman filter is applied to train state-space recurrent neural networks for nonlinear system identification. In order to improve robustness of Kalman filter algorithm dead-zone robust modification is applied to Kalman filter. Lyapunov method is used to prove that the Kalman filter training is stable. r 2006 Elsevier B.V. All rights reserved.
منابع مشابه
Nonlinear system identification with a feedforward neural network and an optimal bounded ellipsoid algorithm
-Compared to normal learning algorithms, for example backpropagation, the optimal bounded ellipsoid (OBE) algorithm has some better properties, such as faster convergence, since it has a similar structure as the Kalman filter algorithm. Optimal bounded ellipsoid algorithm has some better properties than the Kalman filter training, one is that the noise is not required to be Guassian. In this pa...
متن کاملReal-time Discrete Nonlinear Identification via Recurrent High Order Neural Networks
This paper deals with the discrete-time nonlinear system identification via Recurrent High Order Neural Networks, trained with an extended Kalman filter (EKF) based algorithm. The paper also includes the respective stability analysis on the basis of the Lyapunov approach for the whole scheme. Applicability of the scheme is illustrated via real-time implementation for a three phase induction motor.
متن کاملReal-time Discrete Nonlinear Identification via Recurrent High Order Neural Networks Identificación No Lineal en Tiempo Real usando Redes Neuronales
This paper deals with the discrete-time nonlinear system identification via Recurrent High Order Neural Networks, trained with an extended Kalman filter (EKF) based algorithm. The paper also includes the respective stability analysis on the basis of the Lyapunov approach for the whole scheme. Applicability of the scheme is illustrated via real-time implementation for a three phase induction motor.
متن کاملReal-time Discrete Nonlinear Identification via Recurrent High Order Neural Networks Identificación No Lineal en Tiempo Real usando Redes Neuronales Recurrentes de Alto Orden
This paper deals with the discrete-time nonlinear system identification via Recurrent High Order Neural Networks, trained with an extended Kalman filter (EKF) based algorithm. The paper also includes the respective stability analysis on the basis of the Lyapunov approach for the whole scheme. Applicability of the scheme is illustrated via real-time implementation for a three phase induction motor.
متن کاملModeling of Venice Lagoon Time series with Improved Kalman Filter based neural networks
The identification of nonlinear and chaotic systems is an important and challenging problem. Neural network models, particularly Recurrent Neural Networks (RNN) trained with suitable algorithms, have received particular attention in the area of nonlinear identification due to their potentialities to approximate any nonlinear behavior. A method of nonlinear identification based on the RNN model ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 70 شماره
صفحات -
تاریخ انتشار 2007